La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

TEORIA DE DECISIONES Profesor: Gabriel Conde A. Escuela de Ingeniería Industrial y Estadística UNIVERSIDAD DEL VALLE CALI.

Presentaciones similares


Presentación del tema: "TEORIA DE DECISIONES Profesor: Gabriel Conde A. Escuela de Ingeniería Industrial y Estadística UNIVERSIDAD DEL VALLE CALI."— Transcripción de la presentación:

1 TEORIA DE DECISIONES Profesor: Gabriel Conde A. Escuela de Ingeniería Industrial y Estadística UNIVERSIDAD DEL VALLE CALI

2 INTRODUCCION Análisis de decisiones: Es una herramienta cuyo objetivo es ayudar en el estudio de la toma de decisiones en escenarios bajo una gran incertidumbre. Estudiaremos dos formas: Toma de decisiones sin experimentación Toma de decisiones con experimentación

3 TOMA DE DECISIONES SIN EXPERIMENTACIÓN

4 ESQUEMA ALTERNATIVAS FACTIBLES (Estrategias del tomador de decisiones. Selecciona sólo una) VS ESTADO DE LA NATURALEZA (Estrategias de la naturaleza. Sucesos inciertos, se conocen o se tiene idea de sus probabilidades)

5 MARCO CONCEPTUAL El tomador de decisiones necesita elegir una de las alternativas posibles. La naturaleza elegirá uno de los estados de la naturaleza. Cada combinación de una acción y un estado de la naturaleza da como resultado un pago, que se da por medio de una tabla de pagos. La tabla de pagos se usa para encontrar una acción óptima para el tomador de decisiones según un criterio adecuado.

6 MODELO DE TABLA DE PAGOS PARA EL ANÁLISIS DE DECISIONES ESTADOS DE LA NATURALEZA ALTERNATIVAS N1N2…Nn A1Q11Q12…Q1n A2Q21Q22…Q2n ………… AmQm1Qm2…Qmn

7 NOTA: El tomador de decisiones elige su estrategia para promover su propio beneficio. Por el contrario la naturaleza es un jugador pasivo que elige sus estrategias de manera aleatoria. El tomador de decisiones tiene información para tener en cuenta sobre la posibilidad de los estados de la naturaleza. Esta información se traduce en una distribución de probabilidad. El estado de la naturaleza es una variable aleatoria (distribución a priori).

8 MODELO DE TABLA DE PAGOS PARA EL ANÁLISIS DE DECISIONES CON PROBABILIDADES A PRIORI ESTADOS DE LA NATURALEZA ALTERNATIVAS N1N2…Nn A1Q11Q12…Q1n A2Q21Q22…Q2n ………… AmQm1Qm2…Qmn PROB. A PRIORIP1P2…Pn

9 DOS CONCEPTOS IMPORTANTES a priori: Independiente de la experiencia, es decir, que ésta supone pero no puede explicar, aunque sea necesario a la posibilidad de la experiencia; a priori no designa, pues, una anterioridad psicológica, sino una anterioridad lógica o de validez. En la filosofía escolástica, [razonamiento] que desciende de la causa al efecto, o de la esencia de una cosa a sus propiedades.

10 a posteriori Que proviene o depende de la experiencia. En la filosofía escolástica, [razonamiento] que asciende del efecto a la causa o de las propiedades de una cosa a su esencia.

11 FORMULEMOS UN EJEMPLO Un ingenio es dueño de unos terrenos en los que puede haber petróleo. Un geólogo consultor ha informado que piensa que existe una posibilidad entre cuatro de encontrar petróleo. Otra posibilidad es sembrar caña en estos terrenos. El costo de la perforación es de dólares. Si encuentra petróleo el ingreso esperado será de dólares. Si no se encuentra petróleo se incurre en una pérdida de dólares. Por otro lado la caña producirá un ingreso de dólares.

12 TABLA DE PAGOS PARA EL ANALISIS DE DECISION DEL PROBLEMA DEL INGENIO ESTADOS DE LA NATURALEZA ALTERNATIVAPetróleoSeco Perforar Sembrar caña90 Probabilidad a priori

13 CRITERIO DEL PAGO MÁXIMO Para cada acción posible, encuentre el pago mínimo sobre todos los estados de la naturaleza. Después encuentre el máximo de estos pagos mínimos. Elija la acción cuyo pago mínimo corresponde a este máximo.

14 EXPLICACIÓN Este criterio elige la acción que proporciona el mejor pago para el peor estado de la naturaleza. Proporciona la mejor garantía del pago que se obtendrá. Sin importar cual sea el estado de la naturaleza el pago por vender el terreno no puede ser menor que 90.

15 Este razonamiento es válido cuando se está compitiendo con un oponente racional. Este criterio casi no se usa contra la naturaleza.

16 CRITERIO DE LA MÁXIMA POSIBILIDAD Identifique el estado más probable de la naturaleza (aquel que tenga la probabilidad a priori más grande). Para este estado de la naturaleza, encuentre la acción con máximo pago.

17 En nuestro ejemplo, el estado seco tiene la mayor probabilidad a priori. En la columna seco el pago máximo corresponde a la siembra de caña.

18 EXPLICACIÓN La acción elegida es la mejor para el estado más importante de la naturaleza. Desventaja: Ignora otra información. No considera otro u otros estados de la naturaleza distintos al más probable.

19 REGLA DE DECISIÓN DE BAYES Usando las mejores estimaciones disponibles de las probabilidades de los respectivos estados de la naturaleza (en este caso las probabilidades a priori), se calcula el valor esperado del pago de cada acción posible. Se elige la acción con máximo pago esperado.

20 Para nuestro ejemplo E[pago (perforar)] = 0.25* *(-100) = 100 E[pago (sembrar)] = 0.25* *(90) = 90 Como 100 > 90, la decisión es perforar.

21 RESUMEN DE LOS CALCULOS PARA EL CRITERIO DE BAYES ESTADOS DE LA NATURALEZA ALTERNATIVAS PETRÓLEOSECOESPERANZA PERFORAR MAX SEMBRAR C MIN PROB. A PRIORI0,250,75

22 EXPLICACIÓN La mayor ventaja de este criterio es que incorpora toda la información disponible (pagos, estimaciones de las probabilidades de los estados de la naturaleza). La mayor crítica es que las probabilidades a priori no dejan de ser subjetivas.

23 ANÁLISIS DE SENSIBILIDAD Nos centraremos en el análisis de sensibilidad sobre las probabilidades a priori. Queremos saber cómo cambia nuestra decisión al cambiar las probabilidades a priori. Supongamos que sabemos con buena certeza que 0.15 < P(petróleo) < Esto implica que 0.65 < P(seco) < Comenzamos el A. de S. aplicando el criterio de Bayes para los dos casos extremos.

24 A. de S. continuación ESTADOS DE LA NATURALEZA ALTERNATIVAS PETRÓLEOSECOESPERANZA PERFORAR MIN SEMBRAR C MAX PROB. A PRIORI0,150,85

25 A. de S. continuación ESTADOS DE LA NATURALEZA ALTERNATIVAS PETRÓLEOSECOESPERANZA PERFORAR MAX SEMBRAR C MIN PROB. A PRIORI0,350,65

26 Conclusión: La decisión es muy sensible a la probabilidad a priori de encontrar petróleo. Lo cual nos dice que debemos de hacer algo más para tomar nuestra decisión.

27 CAMBIO DEL PAGO ESPERADO EN FUNCIÓN DE LA PROBABILIDAD A PRIORI Si p es la probabilidad a priori de encontrar petróleo entonces el pago esperado por perforar será: E(pago perforar) = 700p – 100(1-p) = 800p - 100

28 GRÁFICA DEL CAMBIO DEL PAGO ESPERADO

29 PUNTO DE CRUCE E(pago perforar) = E(pago caña) 800p – 100 = 90 p = 190/800 = Se debe cultivar caña si p < Se debe perforar en busca de petróleo si p >

30 GENERALIZACIONES

31 MAS DE DOS ALTERNATIVAS Si se tiene más de dos alternativas entonces habrá más de dos rectas. Las partes superiores (para cualquier valor de la probabilidad a priori) seguirán indicando que alternativa debe elegirse. Los puntos de corte indica en donde la decisión cambia de una alternativa a otra.

32 MAS DE DOS ESTADOS DE NATURALEZA Se centra el análisis de sensibilidad en dos estados de la naturaleza. Esto significa investigar que pasa cuando la probabilidad a priori de un estado aumenta mientras la del otro disminuye en la misma cantidad y se mantienen fijas las probabilidades a priori de los estados restantes. Este procedimiento se repite para los pares de estados que se deseen.

33 TOMA DE DECISIONES CON EXPERIMENTACIÓN

34 INFORMACION COMPLEMENTARIA PARA TOMAR UNA DECISIÓN Una exploración sismológica obtiene sondeos sísmicos que indican si la estructura geológica es favorable o no a la presencia de petróleo. Con esto mejoramos la estimación de la probabilidad de que haya petróleo. Supongamos que el costo de este estudio es de dólares.

35 RESULTADOS DE LA EXPLORACIÓN DOS RESULTADOS POSIBLES: Es poco probable encontrar petróleo SSD (Sondeo sísmico desfavorable) Es bastante probable encontrar petróleo SSF (Sondeo sísmico favorable)

36 Por experiencia (datos históricos) tenemos las siguientes probabilidades condicionales: P(SSD estado = petróleo) = 0.4 P(SSF estado = petróleo) = = 0.6 P(SSD estado = seco) = 0.8 P(SSF estado = seco) = = 0.2

37 PROBABILIDADES A POSTERIORI Quisiéramos saber más bien las siguientes probabilidades, llamadas probabilidades a posteriori (Seguramente son más útiles que las anteriores) P(estado = petróleo resultado = SSD) P(estado = seco resultado = SSD) P(estado = petróleo resultado = SSF) P(estado = seco resultado = SSD)

38 EL TEOREMA DE BAYES NOS PERMITE CALCULAR ESTAS PROBABILIDADES Definición: Si A y B son eventos en un espacio de probabilidad la probabilidad condicional de A dado B denotada por P[A B] se define mediante la relación: P[A B] =, con P[B] 0 Definición: Dos eventos A y B en un espacio de probabilidad son independientes si la ocurrencia de uno de ellos no influye en el valor de la probabilidad del otro. Esto se expresa escribiendo: P[A B] = P[A] De lo anterior se deduce que P[A B] = P[A].P[B] si A y B son independientes.

39 CONTINUACIÓN. T. BAYES Una fórmula que se deriva de la definición de probabilidad condicional es la siguiente: P[A B] = P[A]P[B A] = P[B]P[A B] y relaciona las probabilidades condicionales en términos de las probabilidades no condicionales P[A] y P[B]. Probabilidad total: Sea S un espacio muestral y B1, B2,...,Bn, eventos tales que definen una partición (*) en S y A cualquier evento en Fs entonces: P[A] = P[A Bi ]P[Bi]

40 CONTINUACIÓN. T. BAYES Teorema de Bayes: Sea S un espacio muestral y B1, B2,...,Bn, eventos tales que definen una partición en S y A cualquier evento en Fs entonces se cumple la relación: P[B k A] =

41 TEOREMA DE BAYES COMO HERRAMIENTA EN LA TOMA DE DECISIONES

42 CÁLCULO DE LAS PROBABILIDADES A POSTERIORI

43 P(estado = petróleo resultado = SSD) P(estado = seco resultado = SSD)

44 P(estado = petróleo resultado = SSF) P(estado = seco resultado = SSF)

45 DIAGRAMA DE ÁRBOL PARA EL CÁLCULO DE LAS PROBABILIDADES A POSTERIORI

46 CÁLCULO DEL PAGO ESPERADO TENIENDO EN CUENTA LAS PROBABILIDADES A POSTERIORI

47 Pago esperado si el resultado es un sondeo desfavorable E(pago[perforar|SSD]) E(pago[s. caña|SSD])

48 RESUMEN DE LOS CALCULOS PARA EL CRITERIO DE BAYES (SSD) ESTADOS DE LA NATURALEZA ALTERNATIVAS PETRÓLEOSECOESPERANZA PERFORAR SEMBRAR C PROBABILIDAD A POSTERIORI (SSD)1/76/7

49 Pago esperado si el resultado es un sondeo favorable E(pago[perforar|SSF]) E(pago[s. caña|SSF])

50 RESUMEN DE LOS CALCULOS PARA EL CRITERIO DE BAYES (SSF) ESTADOS DE LA NATURALEZA ALTERNATIVAS PETRÓLEOSECOESPERANZA PERFORAR SEMBRAR C PROBABILIDAD A POSTERIORI (SSF)1/2

51 DECISIÓN, BAJO EXPERIMENTACIÓN, CON LA REGLA DE BAYES SONDEO ALTERNATIVA OPTIMA PAGO SIN COSTO EXPLOTACION PAGO CON COSTO EXPLOTACION DESFAVO- RABLE (SD) SEMBRAR CAÑA9060 FAVORABLE (SF) PERFORAR POR PETROLEO300270

52 VALOR DE LA EXPERIMENTACION Antes de realizar cualquier experimento, debe determinarse su valor potencial. Veremos dos métodos para evaluar este potencial, a saber: Valor esperado de la información perfecta. Valor esperado de la experimentación.

53 VALOR ESPERADO DE LA INFORMACIÓN PERFECTA (VEIP) Aquí se supone que la experimentación elimina toda incertidumbre sobre cual es el estado verdadero de la naturaleza y se hace un cálculo sobre cual sería la mejora en el pago esperado. Esta cantidad se llama valor esperado de la información perfecta. (cota superior para el valor del experimento) Pago esperado con información perfecta = 0.25* *90 = VEIP = PECIP – pago esperado sin experim. VEIP = – 100 = 142.5

54 VEIP continuación Si el VEIP fuera menor que 30 entonces no se llevaría a cabo la experimentación. En nuestro caso el VEIP > 30, lo cual indica que puede valer la pena llevar a cabo la experimentación. Entramos a confirmar esto estudiando un segundo método: Valor Esperado de la Experimentación = VEE

55 VALOR ESPERADO DE LA EXPERIMENTACIÓN (VEE) En este caso no se calcula una cota superior para el incremento del pago esperado. Se calcula de manera directa este incremento esperado: Pago esperado de la experimentación = P(resultado j)*E(pago|resultado j), j En esta expresión el cálculo de las esperanzas debe hacerse con las probabilidades a posteriori

56 VEE continuación… De los cálculos anteriores sabemos que los valores de P(resultado j) son: P(SSD) = 0.7 y P(SSF) = 0.3 Así mismo los valores de E(pago|resultado j), que se calcularon teniendo en cuenta las probabilidades a posteriori, son: E(pago|resultado = SSD) = 90 E(pago|resultado = SSF) = 300

57 VEE continuación… El pago esperado con experimentación = 0.7* *300 = 153 El VEE será entonces: VEE = El pago esperado con experimentación - El pago esperado sin experimentación = 153 – 100 = 53 > 30 Como este valor excede a entonces debe llevarse a cabo el sondeo de sismología

58 ÁRBOL DE DECISIÓN Es una manera de visualizar un problema de decisión mediante un esquema de árbol (red sin ciclos). Su objetivo es facilitar la comprensión del problema y los cálculos.

59 CONSTRUCCIÓN DEL ÁRBOL DE DECISIÓN

60 ELEMETOS DEL ÁRBOL Los arcos = Ramas Puntos de ramificación = Nodos Nodo de decisión = Indica que debe tomarse una decisión (cuadrado) Nodo de probabilidad = Indica que ocurre un evento aleatorio (círculo)

61 CÁLCULOS, PRIMERA ETAPA

62 LOS NÚMEROS EN EL ÁRBOL Números debajo de ramas = Flujos de efectivo Números arriba de las ramas = Probabilidad (después de un nodo de probabilidad) (a priori o a posteriori) Números en cada nodo = Pagos esperados (Surgen del procedimiento de análisis)

63 CÁLCULOS, SEGUNDA ETAPA

64 ANÁLISIS Una vez calculado el árbol se hace el siguiente procedimiento de análisis 1. Iniciar en el lado derecho, moverse a la izquierda una columna a la vez, realizar el paso 2 o el 3 según los nodos sean de probabilidad (NP) o de decisión (ND). 2. Para cada NP calcular su pago esperado -PE- [(pago de c/rama) * (probabilidad de c/rama)] 3. Para cada ND, compare los PE de sus ramas y seleccione la alternativa cuya rama tenga mayor pago esperado.

65 BIBLIOGRAFÍA Peña Daniel, Fundamentos de Estadística. Alianza Editorial, Madrid 2001 H. TAHA, Investigación de Operaciones, Ed. Alfaomega, México F. HELLIER, G. LIEBERMAN, Introducción a la investigación de operaciones, Ed. McGraw-Hill KENNEDY y NEVILLE. (1982) "Estadística para Ciencias e Ingeniería". México: Harla. SCHEAFFER y MCCLAVE. (1993) "Probabilidad y Estadística para Ingeniería". México: Grupo Editorial Iberoamérica. BRETÉS A. P, LLABRÉS X. T., GRIMA PERE y POZUELA L. (2000) Métodos estadísticos. Control y mejora de la calidad México: Alfaomega Grupo Editor


Descargar ppt "TEORIA DE DECISIONES Profesor: Gabriel Conde A. Escuela de Ingeniería Industrial y Estadística UNIVERSIDAD DEL VALLE CALI."

Presentaciones similares


Anuncios Google