La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Fenómenos Críticos INTRODUCCIÓN A  LA  COMPLEJIDAD  EN BIOLOGÍA Y MEDICINA.

Presentaciones similares


Presentación del tema: "Fenómenos Críticos INTRODUCCIÓN A  LA  COMPLEJIDAD  EN BIOLOGÍA Y MEDICINA."— Transcripción de la presentación:

1 Fenómenos Críticos INTRODUCCIÓN A  LA  COMPLEJIDAD  EN BIOLOGÍA Y MEDICINA

2 Transiciones de fase termodinámicas
fenómenos de equilibrio macroscópicos Ej: fluido normal punto crítico

3 Transición gas-líquido
Pc Tc T < Tc : transición de fase discontinua ó de 1er orden

4 Ferromagnetismo en sólidos
Magnetización M ↔ campo magnético B Magnetización espontanea Magnetización de saturación ferromagnético paramagnético

5 T = Tc : transición de fase continua, de 2do orden ó fenómeno crítico
T Tc M0(T) Tc: temperatura crítica Fase ferromagnética Fase paramagnética T = Tc : transición de fase continua, de 2do orden ó fenómeno crítico

6 Calor específico C(T): dQ = V C(T) dT;
M0(T)  > 0: exponente crítico T Tc Calor específico C(T): dQ = V C(T) dT; C(T) T  > 0: exponente crítico para

7 Respuesta ante un campo magnético externo B
Susceptibilidad magnética: para V = 1 B << 1 (T) T  > 0: exponente crítico para

8 Orígen microscópico del ferromagnetismo
Interacción de intercambio: i j i : momento magnético ó spin Modelo de Ising Si = ± 1 Si = 1 Sj = - 1

9 Mecánica Estadística Dada la energía de una configuración {S1, S2,…,SN} permite calcular promedios termodinámicos de cualquier cantidad que dependa de estas variables Distribución de Boltzmann: Ej.: magnetización

10 Sistema complejo! B = 0 |m| Transición solo ocurre para N → ∞ T
Fenómeno cooperativo, auto-organizado Tc orden desorden Sistema complejo! m: parámetro de orden

11 Fluidos vs. ferromagnetos
para para

12 B v = 1/ρ

13 susceptibilidad magnética:
para compresibilidad isotérmica: para

14  ~ 1/3 Ley de estados correspondientes

15 Universalidad exponente Xe Ni    fluido binario Ising d=3 (exacto)
bronce  Ising d=3 (exacto) < 0.2 0.04 ± 0.12 0.113 ± 0.005 0.05 ± 0.06 0.12 0.35 ± 0.015 0.358 ± 0.003 0.322 ± 0.002 0.305 ± 0.005 0.31 1.3 ± 0.2 1.33 ± 0.02 1.239 ± 0.002 1.25 ± 0.02 1.25

16 Exponentes críticos Clases de Universalidad Que determina la clase de universalidad? d: dimensión espacial simetría del parametro de orden interacciones de corto alcance

17 Teoría: Grupo de renormalización
Kenneth Wilson (1971) – Premio Nobel de Física 1982 Leo P. Kadanoff ( ) Michael E. Fisher ( ) B. Widom ( ) Concepto principal: INVARIANCIA DE ESCALA

18 Correlaciones espaciales
correlación entre fluctuaciones de spines a una distancia r = |r| O

19 ξ(T): longitud de correlación
para T ≠ Tc ξ(T): longitud de correlación para T  Tc  > 0: exponente crítico para T ~ Tc  > 0: exponente crítico Sistemas críticos presentan correlaciones espaciales de largo alcance! Extrema sensibilidad ante perturbaciones externas → divergencia en las funciones respuesta

20 Ising d=2 – Simulaciones numéricas
T = 0.8 Tc T = 0.95 Tc T = 0.99 Tc T = Tc ξ ξ T = Tc T = 1.1 Tc T = 1.5 Tc T = 2 Tc

21 INVARIANCIA DE ESCALA T = Tc Fractal!
Fluctuaciones de todas las escalas

22

23 Opalescencia crítica

24 Una medida de Complejidad
Si Sj Complejidad: i j Pi(S) Pj(S) Si = +1  Pi(+1) Si = -1  Pi(-1) T >> Tc → Pij(S1,S2) = Pi(S1) Pj(S2) Probabilidad conjunta Pij(S1,S2) eventos independientes: eventos correlacionados: Pij(S1,S2) > Pi(S1) Pj(S2) T << Tc Pi(+1) ~ Pj(+1) ~ 1 Pij(+1,+1) ~ 1 Pi(-1) ~ Pj(-1) ~ 0 Pij(+1,-1) ~ Pij(-1,+1) ~ Pij(-1,-1) ~ 0

25

26 Grupo de renormalización
Conjunto de transformaciones de escala: “ZOOM termodinámico” T → Tc ξ  ∞ Universalidad: los exponentes críticos solo dependen de aquellas propiedades que permenecen invariantes ante una trasformación de escala

27 Correlaciones temporales
Relajación al equilibrio: para T ≠ Tc τ(T): tiempo de relajación τ(T) ~ ξ z ~|T-Tc|z z > 0: exponente crítico dinámico frenado crítico: Sistemas críticos presentan correlaciones temporales de largo alcance!

28 Fenómenos críticos Invariancia de escala no trivial (longitud de correlación divergente) Correlaciones espaciales y temporales (entre fluctuaciones) de largo alcance (leyes de potencia) Sensibles ante perturbaciones externas: funciones respuestas divergentes → leyes de potencia caracterizadas por exponentes críticos Universalidad → fenómenos independientes de los detalles finos

29 r’ [cm] = r [mm]/10 r0 r0 No es invariante por una transformación de escala!

30 Las leyes de potencia son invariantes por escala
r’ [cm] = r [mm]/10


Descargar ppt "Fenómenos Críticos INTRODUCCIÓN A  LA  COMPLEJIDAD  EN BIOLOGÍA Y MEDICINA."

Presentaciones similares


Anuncios Google