Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porMaría Dolores Toro Alvarado Modificado hace 9 años
1
Una relación es una conexión o correspondencia entre objetos o sujetos representada como un conjunto de pares ordenados
2
ES FUNCIÓN DE El precio del transporte La altura El espacio recorrido La presión atmosférica El precio del petróleo La velocidad
3
A cada precio del petróleo le corresponde Un precio del transporte A cada velocidad le corresponde Un espacio recorrido A cada altura le corresponde Una presión atmosférica
4
A cada precio del petróleo le corresponde Un precio del transporte A cada velocidad le corresponde Un espacio recorrido A cada altura le corresponde Una presión atmosférica DOMINIOS DE DEFINICIÓN RECORRIDOS
5
NO SI DOMINIOS DE DEFINICIÓNRECORRIDO
6
A esta asignación se le llama FUNCIÓN
21
Función Lineal Función Cuadráticas Función Cúbica Función Potencia Función Raíz donde Función Reciproca donde
22
Funciones Racionales Funciones Irracionales Función Valor Absoluto donde
23
Función Exponenciales Función Logarítmicas Funciones Trigonométricas
24
Función Lineal Función Cuadráticas Función Cúbica Función Potencia Función Raíz Función Reciproca
25
Función Valor Absoluto Función Exponenciales Función Logarítmicas Funciones Trigonométricas
26
Muy importante!! f(x)= a > 1 Función creciente Rango: (0; ∞) Dominio: Asíntota: Eje x Gráfica cóncava hacia arriba
27
OJO!! f(x)= 0 < a < 1 Función decreciente Rango: (0; ∞) Dominio: Asíntota: Eje x Gráfica cóncava hacia arriba
28
n 1S/.2,00000 2S/.2,25000 3S/.2,37037 4S/.2,44141 12S/.2,61304 52S/.2,69260 365S/.2,71457 8760S/.2,71813 525600S/.2,71828 ….…..
29
Función creciente Rango: (0; ∞) Dominio: Asíntota: Eje x Gráfica cóncava hacia arriba xexex 01 12,71.. 27,38..
30
¼ -2 ½ 1 0 2 1 4 2 8 3
33
Ecuación logarítmicaEcuación exponencial Funciones exponenciales y logarítmicas
34
Son aquellos cuya base es el número e ≈ 2,7182818.. Para cualquier número positivo x.
37
Función Inversa
39
Decimos que una función es par siempre que para todo valor de la variable independiente perteneciente al dominio se cumpla que:
40
a)¿es par o impar?. b) Utilizando Winplot grafique Dada la función Solución Analizaremos si la función es par, para ello debe cumplir que Para este caso Por lo tanto esta función es par
41
Función Impar Decimos que una función es impar siempre que para todo valor de la variable independiente perteneciente al dominio se cumpla que: Función sin paridad El carácter par o impar de una función es lo que conocemos como su paridad. Las funciones que no son ni pares, ni impares, carecen de paridad.
42
La función es impar
43
Una función compuesta de g y f denotamos por Gráficamente podemos expresar la función compuesta de g y f de la siguiente manera Función Compuesta
44
Sea f(x) y g(x) dos funciones reales de variable real. Llamamos función COMPUESTA a alguna de las siguientes expresiones: (f o g)(x) = f [ g (x) ] (g o f)(x) = g [ f (x) ] Ejemplo_1 Sea f(x) = 1 / x,, g(x) = x 2 - 1 (f o g)(x) = f [ g (x) ] = 1 / (x 2 – 1) (g o f)(x) = g [ f (x) ] = (1 / x) 2 – 1 = (1 / x 2 ) – 1 = ( 1 - x 2 ) / x 2 Como se ve es muy diferente (f o g)(x) que (g o f)(x)
45
Suma de f y g Resta de f y g Producto de f y g Cociente de f y g Operaciones entre funciones
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.