Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porGregorio Sosa Ojeda Modificado hace 9 años
1
Factorización del trinomio de la forma: x2 +bx + c
Esta expresión resulta del producto de binomios con término común. Para factorizar se realizan los pasos siguientes: Factorizar la expresión: x2 + 3x + 2
2
x2 + 3x + 2 x2 + 3x + 2 = (x )(x ) x2 + 3x + 2 = (x + )(x )
Se extrae la raíz cuadrada del termino cuadrático y el resultado se coloca en ambos factores x2 + 3x + 2 = (x )(x ) Se coloca el signo de segundo término + en el primer factor x2 + 3x + 2 = (x + )(x ) Se realiza la multiplicación de los signos del segundo y tercer término (+)(+)= + y el resultado se coloca en el segundo factor x2 + 3x + 2 = (x + )(x + )
3
Finalmente la factorización es:
Se buscan dos números cuyos productos sean igual a 2 y estos mismos números sumados den 3 ( )( ) = 2 ( )+( ) = 3 Finalmente la factorización es: x2 + 3x + 2 = (x + 2 )(x + 1 )
4
Factorizar la expresión: x2 + 11x + 24
Se extrae la raíz cuadrada del termino cuadrático y el resultado se coloca en ambos factores x2 + 11x + 24 = (x )(x ) Se coloca el signo de segundo término + en el primer factor x2 + 11x + 24 = (x + )(x ) Se realiza la multiplicación de los signos del segundo y tercer término (+)(+)= + y el resultado se coloca en el segundo factor x2 + 11x + 24 = (x + )(x + )
5
Finalmente la factorización es:
Se buscan dos números cuyos productos sean igual a 24 y estos mismos números sumados den 11 ( )( ) = 24 ( )+( ) = 11 Finalmente la factorización es: x2 + 11x + 24 = (x + 8 )(x + 3 )
6
Factorizar la expresión: x2 – x – 6
x2 – x – 6 = (x )(x ) x2 – x – 6 = (x – )(x ) x2 – x – 6 = (x – )(x + ) ( )( ) = – 6 ( )+( ) = – 1 Finalmente la factorización es: x2 – x – 6 = (x + 2 )(x – 3 )
7
Ejercicios en clase: m2 – 13m + 30 = y2 + 9y + 20 = x2 – 2x – 15 =
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.