La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Distribución Normal Distribución Normal

Presentaciones similares


Presentación del tema: "Distribución Normal Distribución Normal"— Transcripción de la presentación:

1 Distribución Normal Distribución Normal
Sea x una variable aleatoria continua, se dice que x esta normalmente distribuida, con media  y varianza 2, si su función de densidad está dada por La probabilidad de que x esté entre a y b, está dado por el área bajo la curva entre a y b. a b

2 Propiedades de la distribución normal
1.- El área total bajo la curva arriba del eje x es una unidad de área. A=1 2.- Es simétrica en torno a la media 3.- Media mediana y moda coinciden

3 Propiedades de la distribución normal
4.- La distribución normal está completamente determinada por los parámetros m y s . a) Los distintos valores de m trasladan la gráfica a lo largo del eje x m1 m2 m3

4 Propiedades de la distribución normal
b) Los diferentes valores de s determinan el grado de aplanamiento o levantamiento de la curva. s3 s2 s1 m

5 Propiedades de la distribución normal
5.-Sea x una variable con distribución normal a) La probabilidad de que x se encuentre a una distancia menor a una desviación estándar de la media poblacional es de Esto es, el 68% de todos los valores de x se encuentran a una distancia menor de una desviación estándar de la media poblacional b) La probabilidad de que x se encuentre a una distancia menor a dos desviaciones estándar de la media poblacional es de Esto es, el 95% de todos los valores de x se encuentran a una distancia menor a dos desviaciones estándar de la media poblacional 0.68 0.95

6 Propiedades de la distribución normal
La probabilidad de que x se encuentre a una distancia menor a tres desviaciones estándar de la media poblacional es de Esto es, el 99% de todos los valores de x se encuentran a una distancia menor a tres desviaciones estándar de la media poblacional Ejemplo: En cierta población la estatura media de los hombres adultos es de 1.68, con una desviación estándar de Si se elige una persona al azar, en esta población, La probabilidad de que mida entre 1.63 y 1.73 es de 0.68. La probabilidad de que mida entre 1.58 y 1.78 es de 0.95 0.99 La probabilidad de que mida entre 1.53 y 1.83 es de 0.99

7 Propiedades de la distribución normal
En el ejemplo anterior, encuentre la probabilidad de que una persona elegida al azar mida entre 1.66 y 1.69 ? Esta función es integrable únicamente mediante métodos numéricos como la regla del trapecio y la regla de Simpson. La regla del trapecio consiste en dividir el área en pequeños rectángulos y calcular la suma de las áreas. 1.68

8 Distribución normal estándar
Las áreas bajo la curva para la distribución normal con media cero y desviación estándar uno se pueden obtener en tablas. Esta distribución recibe el nombre de distribución normal estándar.

9

10 Distribución normal estándar
Ejemplos: Calcule 0.9625 0.1003 0.9625 0.1003 -1.28 1.78

11 Distribución normal estándar
Calcule = = 0.9335 .4099 1.34 -2.45 1.56

12 Distribución normal estándar

13 Estandarización Sea X una variable aleatoria con distribución normal con media μ y desviación estándar σ, entonces Tiene una distribución normal con media 0 y desviación estándar 1.

14 Cálculo de probabilidades con la distribución normal
Regresemos al problema de la estatura (m=1.68, s=0.05) . Encuentre la probabilidad de que una persona elegida al azar mida entre 1.66 y 1.69.

15 Cálculo de probabilidades con la distribución normal
Ejemplo: El peso promedio de los pargos es de 2.3 kg. con una desviación estándar de 0.5 kg. Si se elige un pargo al azar, encuentre la probabilidad de que pese: Menos de 2 kg. Mas de 2.5 kg. Entre 2.0 y 2.7 kg. a)

16 Cálculo de probabilidades con la distribución normal

17 Cálculo de probabilidades con la distribución normal
Ejemplo: El manto de la mantaraya gigante del Pacifico tiene una longitud promedio de 2.7 m con una desviación estándar de 0.7 m. Si se elige una mantaraya al azar, calcule la probabilidad de que mida: Menos de 2.1 m. Más de 2.6 m. Entre 2.2 y 2.5 m. Entre 2.8 y 2.9 m. Entre 2.4 y 3 m. Más de 3 m.


Descargar ppt "Distribución Normal Distribución Normal"

Presentaciones similares


Anuncios Google