Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porJosé Villalobos Pérez Modificado hace 7 años
2
Aprender y analizar de forma clara la ecuación de cantidad de movimiento, con el fin de poder aplicarla en un interés práctico. OBJETIVO GENERAL Desarrollar la ecuación de cantidad de movimiento, aplicando la segunda ley de newton. Proporcionar información sobre la ecuación de cantidad de movimiento en los diferentes sistemas coordenados, con la finalidad de hacer más sencillo su manejo OBJETIVOS ESPECIFICOS
3
Cuando actúan fuerzas sobre una partícula, esta acelera de acuerdo a la segunda ley de Newton del movimiento: Se conoce como la cantidad de movimiento de un elemento de masa (M), al producto de esta por su velocidad La suma vectorial de todas las fuerzas (F) que actúan sobre una masa de fluido es igual a la rapidez del cambio de vector lineal cantidad de movimiento de la masa de fluido
9
La ecuación general de la cantidad de movimiento se simplifica a: Puesto que se sabe que en un flujo permanente las propiedades del flujo y las condiciones del movimiento en cualquier punto no cambian con el tiempo, es decir que la velocidad y la densidad en un punto permanecen constantes. Se sabe que el vector velocidad y el vector área son ambos perpendiculares al área, es decir
10
La fuerza quedaría: Se sabe que: pero como, entonces Entonces la fuerza quedaría:
11
Si tuviéramos el siguiente volumen de control Si tomamos dos secciones como: 1-1 y 2-2; en cada extremo de la porción de fluido entre ambas secciones actúa una fuerza, como se muestra en el gráfico. Y si el flujo fuera permanente, entonces la fuerza sería: Las velocidades son: y y
12
La sumatoria de las fuerzas en los ejes X e Y son: Las fuerzas quedarían:
13
Sea la vena liquida siguiente:
14
Donde y son vectores unitarios perpendiculares a las secciones y respectivamente. Por el principio de la cantidad de movimiento se sabe que: Pero como el flujo es liquido y se sabe que los líquidos son incompresibles, por lo tanto la densidad de un punto a otro no varía, es decir:, y la fuerza resultaría:
15
En cada sección transversal se desarrolla una fuerza; es decir en S 1 se produce una fuerza y en la sección S 2 se produce una fuerza y la suma de ambas nos da la fuerza total que actúa en la vena liquida. Si se acepta que los filetes son rectos y a lo más con suave curvatura, se puede decir que las velocidades son perpendiculares a las secciones transversales y además que el sentido es opuesto al sentido de, se puede escribir que:
16
La fuerza quedará: Por ser un flujo permanente, el caudal es igual en ambas secciones transversales:
17
Y como se ha aceptado que los filetes sean rectas con la más suave curvatura, entonces se puede decir que: Por lo tanto: Entonces:
18
Calcular la fuerza de un fluido incompresible sobre un tubo curvo
20
La fuerza que se necesita para que el álabe permanezca en su sitio, cuando el flujo permanente de un chorro de agua golpea sobre el.
21
Para este tipo de problemas se supone que no hay cambios en la velocidad y en el área transversal del chorro. Tambien Entonces de las ecuaciones de la aplicación 1:
25
Si el álabe se mueve a una velocidad constante
26
Entonces de las ecuaciones de la aplicación 2
28
Determinar las reacciones Externas en x y y para mantener La paleta fija que dirige el chorro En un plano horizontal. V1 = 28 m/s, V2 = 27 m/s, Q = 0.20 m3/s. EJERCICIO N°1
29
Solución: DATOS : V1 = 28 m/s, V2 = 27 m/s, Q = 0.20 m3/s.
30
) -F x = 900 (0.2) (28- (-27)COS 30) F x = -9248 N
31
F x = 900 (0.2) (- 27sen 30 ) F x = - 2430 N
32
EJERCICIO N°2 Un deflector desvía un manto de agua en un ángulo de 30°¿Qué fuerzas se requiere para mantener el deflector en su lugar si m=32kg?
33
Solución: Dirección «X»:Dirección «Y»:
34
Un chorro de agua es desviado 60º por una paleta estacionaria como se puede observare n la figura. El chorro entrante tiene una velocidad de 100 ft/s y un diámetro de 1 pulgada. Encuentre la fuerza ejercida por el chorro sobre la paleta. Desprecie la influencia de la gravedad. EJERCICIO N°3
35
Diagrama de cuerpo libre (DCL)
36
Para el desarrollo del ejercicios emplearemos la Aplicación 2: “paletas o álabes”, partiendo de la formula de Cantidad de Movimiento.
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.