Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada pormagelin aquino Modificado hace 7 años
1
MULTIPLICACIÓN DE VECTORES
2
EXISTEN DIFERENTES MÉTODOS PARA LA MULTIPLICACIÓN DE VECTORES: Producto de un vector por un escalar Producto escalar o producto punto Producto vectorial o producto cruz Producto mixto
3
PRODUCTO POR UN ESCALAR ANA DANIELA CASTRO
4
PRODUCTO POR UN ESCALAR Este producto da como resultado otro vector, con la misma dirección que el primero. al hacer la multiplicación por un escalar cambia el modulo del vector y en caso de ser negativo cambia también el sentido, pero la dirección siempre será la misma.
5
Matemáticamente este producto se realiza multiplicando al escalar por cada una de las componentes del vector. Esta multiplicación se puede hacerse de manera algebraica y geométrica. En ambos casos, el resultado dependerá de si el escalar es positivo mayor que 1, o positivo menor que 1 pero mayor que cero o si es negativo. Cuando se multiplica por un positivo mayor que 1 el vector aumenta de modulo las veces que señala el escalar, y su dirección nuca cambia. Cuando se multiplica por un positivo menor que 1 y mayor que cero, el vector disminuye pero mantiene su dirección y sentido. Cuando se multiplica por cualquier negativo siempre cambiara el sentido del vector resultante.
6
PRODUCTO VECTORIAL O PRODUCTO CRUZ MAGERLIN AQUINO
7
PRODUCTO VECTORIAL El producto vectorial de Gibbs o producto cruz es una operación binaria entre dos vectores en un espacio tridimensional. El resultado es un vector perpendicular a los vectores que se multiplican, y por lo tanto normal al plano que los contiene.
8
PROCEDIMIENTO Se colocan las componentes de ambos vectores como elementos de una matriz. Las componentes del vector resultante: obtén una submatriz que contenga todas las componentes de la matriz original excepto la columna con la componente a calcular. Calcular la determinante de cada submatriz obtenida en el paso anterior El resultado será un vector en r 3.
9
PROPIEDADES u X v ES UN VECTOR PERPENDICULAR TANTO A u COMO A v EL PRODUCTO PUNTO DE DOS VECTORES PERPENDICULARES ES IGUAS A 0 NO SE CUMPLE LA PROPPIEDAD CONMUTATIVA EL PRODUCTO VECTORIAL DE UN MISMO VECTOR ES IGUAL A 0
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.