INTERVALO DE CONFIANZA

Slides:



Advertisements
Presentaciones similares
Intervalos de Confianza para la Media de la Población
Advertisements

ESTIMACION DE PARAMETRO
De la muestra a la población
Introducción al tema El único método científico para validar conclusiones sobre un grupo de individuos a partir de la información que nos proporciona un.
La prueba U DE MANN-WHITNEY
ESTIMACION DEL TAMAÑO DE LA MUESTRA.
Estimación por intervalos de confianza.
METODOLOGÍA DE INVESTIGACIÓN Titular: Agustín Salvia
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL DE LA FUERZA ARMADA NACIONAL NUCLEO ZULIA.
Estimación por Intervalos de confianza
INTERVALO DE CONFIANZA
Uso de pruebas estadísticas paramétricas y no paramétricas
INFERENCIA ESTADÍSTICA
Distribución muestral de la Media
Estadística Administrativa I
Prueba de hipótesis Equivalencia entre la prueba de hipótesis y los intervalos de confianza Valor de probabilidad Valor de probabilidad unilateral Prueba.
Inferencia Estadística
Diseño Estadístico y Herramientas para la Calidad
INTERVALO DE CONFIANZA
Distribuciones derivadas del muestreo
Estadística Clase 3 Intervalos de confianza.
Estadística Administrativa I
DISTRIBUCIONES DE MUESTREO
ESTADISTICA TEMA 12.
Unidad V: Estimación de
ESTADISTICA TEMA y 223.
ESTIMACION En varios pasajes de este libro hemos planteado la dificultad que se confronta en las investigaciones, de llegar a conclusiones sobre una población.
IPC 2008 Estimaciones por Bootstrap
1 M. en C. Gal Vargas Neri. 2 Planeación del curso TEMACAP.TITULODÍASSEMFEC FIN TEMA 00MOTIVACION Y PLANEACION1111/01 TEMA I1-2ESTADISTICA Y MEDICION2115/01.
Tema 8: Estimación 1. Introducción.
Distribución Normal o gaussiana
DISTRIBUCION NORMAL Mario Briones L. MV, MSc 2005.
Introducción La inferencia estadística es el procedimiento mediante el cual se llega a inferencias acerca de una población con base en los resultados obtenidos.
Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos.
ESTADISTICA I CSH M. en C. Gal Vargas Neri.
ESTIMACION POR INTERVALOS
Inferencia Estadística
Estimación por intervalo en la regresión: Bandas de Confianza
Estadística para administradores
Análisis y diseño de experimentos
INFERENCIA ESTADISTICA
Unidad V: Estimación de
Pruebas de hipótesis.
PRUEBAS ESTADISTICAS NO PARAMETRICAS
COMPROBACION DE HIPOTESIS SOBRE DOS PROMEDIOS Mario Briones L. MV, MSc 2005.
Estimación y contraste de hipótesis
INTERVALO DE CONFIANZA
INTERVALOS DE CONFIANZA
ESTIMACIÓN DE PARÁMETROS
Prueba de Hipótesis Una hipótesis estadística es un supuesto que se establece sobre las características de una distribución poblacional El estudio se plantea.
Distribuciones de Probabilidad
Intervalos de confianza
Estadística Experimental
CONTRASTE DE HIPÓTESIS Dimensiones Largo275mm. 169 mm 2 Ancho175mm.49 mm 2 Alto175mm.49 mm 2 Peso16 Kg.1 Kg 2. SITUACIÓN PROBLEMA.
INFERENCIA ESTADÍSTICA
UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS ECONOMICAS INFERENCIA ESTADISTICA TEMA: ESTIMACION PUNTUAL, PROPIEDADES DE LAS ESTIMACIONES;
¿Cómo se construye el intervalo de confianza para la proporción poblacional(P) con una muestra aleatoria? Desarrollemos el ejercicio siguiente:
UNIDAD I.- Analisis 3.4 Prueba de Hipotesis.
TAMAÑO DE LA MUESTRA. Para definir el tamaño de la muestra se debe tener en cuenta los recursos disponibles y las necesidades del plan de análisis, el.
Danny Rafael Amaya Cotes Marcos Elías López Guerra.
Intervalos de Confianza
POBLACIÓN Y MUESTRA CÁLCULO DEL TAMAÑO MUESTRAL. Descripción e inferencia Población Muestra Muestreo Inferencia Resultado.
Estimación Estadística Tares # 3. Estimación Estadística Conjunto de técnicas que permiten dar un valor aproximado de un parámetro de una población a.
Intervalos de Confianza M. C. José Juan Rincón Pasaye UMSNH – FIE Mayo de 2003.
Estadística Inferencial
Estimación estadística
ESTIMACION DEL TAMAÑO DE LA MUESTRA. La primera pregunta que un estadístico debe contestar al planear una investigación de muestreo es, casi siempre, el.
DISTRIBUCIÓN T DE STUDENT
Viviana Acosta Estadística II. Que es Es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida.
INTERVALO DE CONFIANZA
Transcripción de la presentación:

INTERVALO DE CONFIANZA ¿Dónde esta el Parámetro?

Concepto El parámetro poblacional es frecuentemente un valor desconocido que solo puede ser estimado usando los dotas obtenidos de una Muestra. De ahí que resulta necesario determinar con cierto grado de certeza cual puede ser el verdadero parámetro.

Estimación de Parámetros Parámetros poblacionales y Estadísticos Muestrales Parámetros: Media (m) Varianza(s2) Desv. Est. (s) Etc. Datos (Población de Interés) Inferencias Muestreo Estadísticos: Promedio ( ) Varianza muestral(S2) Desv. Est. muestral(S) Etc. X Muestras UMSNH - FIE

PARAMETRO INTERVALO ESTIMADOR

Intervalos de Confianza Descripción PARÁMETROS POBLACIÓN Muestreo aleatorio Inferencias MUESTRA (x1, x2,…..,xn) ESTIMACIONES (Valores concretos) ESTIMADORES (Estadísticos)

Definición Se llama intervalo de confianza en estadística a un par de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa por 1 - α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo. Wikipedia ???

Intervalo de confianza

Resumen En el contexto de estimar un parámetro poblacional, un intervalo de confianza es un rango de valores (calculado en una muestra) en el cual se encuentra el verdadero valor del parámetro, con una probabilidad determinada.

Que lo hace variar El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más posibilidades de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumentan sus posibilidades de error.

La distribución Para la construcción de un determinado intervalo de confianza es necesario conocer la distribución teórica que sigue el parámetro a estimar, Es habitual que el parámetro se distribuya normalmente

Intervalo de confianza para la media de una población De una población de media μ y desviación típica σ se pueden tomar muestras de n elementos. Cada una de estas muestras tiene a su vez una media (). Se puede demostrar que la media de todas las medias muestrales coincide con la media poblacional:[2] Pero además, si el tamaño de las muestras es lo suficientemente grande,[3] la distribución de medias muestrales es, prácticamente, una distribución normal (o gaussiana) con media μ y una desviación típica dada por la siguiente expresión: . Esto se representa

Distribución del parametro Esto se representa como sigue

Distribución De forma estandarizada

Nivel de Confianza La probabilidad de que el verdadero valor del parámetro se encuentre en el intervalo construido se denomina nivel de confianza, y se denota 1- . La probabilidad de equivocarnos se llama nivel de significancia y se simboliza . Generalmente se construyen intervalos con confianza 1- =95% (o significancia =5%). Menos frecuentes son los intervalos con =10% o =1%.

Usando Z Para construir un intervalo de confianza, se puede comprobar que la distribución Normal Estándar cumple : P(-1.96 < z < 1.96) = 0.95

Luego, si una variable X tiene distribución N(μ, ), entonces el 95% de las veces se cumple:

Despejando en la ecuación se tiene:

Usando estimadores Generalmente, cuando se quiere construir un intervalo de confianza para la media poblacional , la varianza poblacional es desconocida, por lo que el intervalo para construido al final de II es muy poco práctico.

Ejemplo: Los siguientes datos son los puntajes obtenidos para 45 perros de una escala de precisión al capturar un objeto (mayor puntaje significa mayor precisión). 2 5 6 8 9 10 11 13 14 15 16 17 18 19 20

Construcción Para construir un intervalo de confianza para el puntaje promedio poblacional, asumamos que los datos tienen distribución normal, con varianza poblacional desconocida. Como es desconocido, lo estimamos por s =18,7. Luego, un intervalo de confianza aproximado es:

Conclusión Luego, el intervalo de confianza para es (13,2 , 15,8). Es decir, el puntaje promedio poblacional se encuentra entre 13,2 y 15,8 con una confianza 95%. Por lo tanto con un 95 % de confianza diremos que cualquier perro tendrá una precisión entre 13,2 y 15,8

Uso de Intervalos de Confianza para verificar Hipótesis. Los intervalos de confianza permiten verificar hipótesis planteadas respecto a parámetros poblacionales. Por ejemplo, supongamos que se plantea la hipótesis de que el promedio de peso de nacimiento de cierta población de primates es igual a la media nacional de 3250 gramos.

DATOS Al tomar una muestra de 30 recién nacidos de la población en estudio, se obtuvo: = 2930 s= 450 n= 30

Al construir un intervalo de 95% de confianza para la media poblacional, se obtiene:

1. Intervalos de Confianza Ejercicios Ej 1. Un fabricante de fibras sintéticas desea estimar la tensión de ruptura media de una fibra. Diseña un experimento en el que se observan las tensiones de ruptura, en libras, de 16 hilos del proceso seleccionados aleatoriamente. Las tensiones son: 20,8 ; 20,6 ; 21,0 ; 20,9 ; 19,9 ; 20,2 ; 19,8 ; 19,6 ; 20,9 ; 21,1 ; 20,4 ; 20,6 ; 19,7 ; 19,6 ; 20,3 y 20,7. Supóngase que la tensión de ruptura de una fibra se encuentra modelada por una distribución normal con desviación estándar de 0,45 libras. Construir un intervalo de confianza estimado del 99% para el valor real de la tensión de ruptura promedio de la fibra.

1. Intervalos de Confianza Ej 2. La Cámara de Comercio de Buenos Aires se encuentra interesada en estimar la cantidad promedio de dinero que gasta la gente que asiste a convenciones calculando comidas, alojamiento y entretenimiento por día. De las distintas convenciones que se llevan a cabo en la ciudad, se seleccionaron 16 personas y se les preguntó la cantidad que gastaban por día. Se obtuvo la siguiente información en ARS: 150, 175, 163, 148, 142, 189, 135, 174, 168, 152, 158, 184, 134, 146, 155, 163. Si se supone que la cantidad de dinero gastada en un día es una variable aleatoria distribuida normalmente, obtener los intervalos de confianza estimados del 90%, 95% y 99% para la cantidad promedio real.

1. Intervalos de Confianza Ej 3. Dos universidades financiadas por el gobierno tienen métodos distintos para inscribir a sus alumnos a principios de cada semestre. Las dos desean comparar el tiempo promedio que les toma a los estudiantes completar el trámite de inscripción. En cada universidad se anotaron los tiempos de inscripción para 100 alumnos seleccionados al azar. Las medias y las desviaciones estándares muestrales son las siguientes: Media Universidad x = 50,2 Desvío Universidad x (Sx): 4,8 Media Universidad y = 52,9 Desvío Universidad y (Sy): 5,4 Si se supone que el muestreo se llevo a cabo sobre dos poblaciones distribuidas normalmente e independientes, obtener los intervalos de confianza estimados del 90%, 95% y 99% para la diferencia de las medias del tiempo de inscripción para las dos Universidades.

1. Intervalos de Confianza Ej 4. En dos ciudades se llevó a cabo una encuesta sobre el costo de vida para obtener el gasto promedio en alimentación en familias constituidas por cuatro personas. De cada ciudad se seleccionó aleatoriamente una muestra de 20 familias y se observaron sus gastos semanales de alimentación. Las medias y las desviaciones estándares muestrales fueron las siguientes: Media muestral ciudad x: 135 Desvío muestral ciudad x (Sx): 15 Media muestral ciudad y: 122 Desvío muestral ciudad y (Sy): 10 Si se supone que se muestrearon dos poblaciones independientes condistribución normal cada una y varianzas iguales, obtener los intervalosde confianza estimados del 95% y 99% para la diferencia de medias poblacionales.

1. Intervalos de Confianza Ej 5. Mediante el uso de los datos del ejercicio 2 obtener un intervalo de confianza estimado del 95% para la varianza poblacional.