Convección Convección natural.

Slides:



Advertisements
Presentaciones similares
Campo Eléctrico en placas Planas y Paralelas
Advertisements

COORDENAS CILINDRICAS
Transferencia de calor por convección
ING Roxsana Romero A Convección.
INTERCAMBIADORES DE CALOR
3.1. Regímenes de flujo laminar y turbulento
TEORIA CINETICA DE GASES
Mecánica De Los Fluidos
GASES Los gases, igual que los líquidos, no tienen forma fija pero, a diferencia de éstos, su volumen tampoco es fijo. También son fluidos, como los líquidos.
Tema 3: Convección.
TEMA 6.2. DINÁMICA DE FLUIDOS. (HIDRODINÁMICA).
Transferencia de Calor
FLUIDOS CURSO DE FÍSICA II.
INTEGRENTES DEL EQUIPO: Víctor Emmanuel Martínez Nandayapa.
Principios de la Termodinámica Conceptos Básicos. Definiciones
TRANSMISION DEL CALOR JAVIER DE LUCAS.
Convección Libre (natural)
Profesora Mónica Vera Informática Educativa
UNIDAD: HIDROSTÁTICA Hidrostática.
ECUACIONES DIMENSIONALES
Superficies extendidas (aletas)
2. CONDUCCIÓN UNIDIMENSIONAL EN ESTADO ESTABLE.
EL CALOR Y SUS PROPIEDADES
Flujo Externo Es el que se da cuando un objeto se expone a un flujo no confinado. Se verán los problemas de convección forzada de baja velocidad sin que.
TEMA I. EL PROCESO DE LA CONDUCCIÓN DEL CALOR
JUAN ANDRÉS SANDOVAL HERRERA
Dilatación térmica o Expansión térmica de sólidos y Líquidos
Mecánica de Fluidos Reynolds, factor de fricción
INTRODUCCIÓN A LA CONVECCIÓN
La teoría cinética trata de explicar las propiedades de los gases, tales como la presión, la temperatura ó el volumen, considerando su composición molecular.
Juan David Galvis Sarria Código:  Es un campo vectorial.  Indica como se comportara una “carga de prueba” al estar en la vecindad de la carga.
simulación numérica de la inyección gaseosa de un líquido
Fenómenos de flujo de fluidos
La clase anterior.. La clase anterior. Transmisión de calor en un tubo circular.
Fluidos Hidrodinámica
METODO DEL BALANCE DE ENERGÍA DIFERENCIAS FINITAS m,n m,n+1 m,n-1 m-1,nm+1,n.
PROPIEDADES FISICAS DEL AIRE
LOS ESTADOS DE LA MATERIA Y SUS CAMBIOS DE ESTADO
UNIDAD I: TERMOQUÍMICA Capítulo 1: FUNDAMENTOS DE LA TERMOQUÍMICA
Mecánica de los fluidos
Mecánica de los Fluidos
Transporte de energía por Convección
CONCEPTOS BÁSICOS DE TERMODINÁMICA
Mecánica de los fluidos
FISICA GRADO ONCE Luz H. Lasso.
CAPACIDAD Y CORRIENTE ELÉCTRICA
FUERZAS Y PRESIONES EN FLUIDOS
CONVECCIÓN Debido a la mayor distancia entre moléculas de un fluido, la resistencia térmica a la transmisión de calor por conducción es mucho mayor que.
LA MATERIA Y SUS PROPIEDADES
Universidad Central del Ecuador
GRUPO # 2.
Los estados de la materia
Claudia Patricia Parra Medina
TEMA 5: TERMOQUÍMICA QUÍMICA IB.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
Copyright © 2010 Pearson Education, Inc. Resumen Calor y Temperatura.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
¡Sigo sin saber como lo hace! HIDRODINÁMICA. Fluidos en Movimiento Los fluidos pueden moverse o fluir de distintas maneras. El agua puede fluir suave.
TERMOQUÍMICA.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
TEMA 3 CONVECCION Universidad de Los Andes Facultad de Ingeniería
MAESTRIA EN GEOFISICA ELIANA LIZETH GUTIERREZ RINCON ABRIL 2016.
Ebullición y condensación.
Ebullición y condensación.
Convección Forzada Flujo Laminar Interno
Ecuaciones cubicas de estado Estas ecuaciones de estado van de las que contienen unas pocas constantes hasta expresiones complejas que involucran veinte.
Lic. Amalia Vilca Pérez.  La transferencia de calor con frecuencia se tiene interés en la razón de esa transferencia a través de un medio, en condiciones.
CONVECCION LIBRE Universidad de Los Andes Facultad de Ingeniería Transferencia de Calor Prof. Franz Raimundo
ORGANIZACIÓN DE LA CLASE
Transcripción de la presentación:

Convección Convección natural

Convección natural En convección natural el flujo resulta solamente de la diferencia de temperaturas del fluido en la presencia de una fuerza gravitacional. La densidad de un fluido disminuye con el incremento de temperatura.

En un campo gravitacional, dichas diferencias en densidad causadas por las diferencias en temperaturas originan fuerzas de flotación. Por lo tanto, en convección natural las fuerzas de flotación generan el movimiento del fluido. Sin una fuerza gravitacional la convección natural no es posible. En convección natural una velocidad característica no es fácilmente disponible.

Corrientes convectivas adyacentes a placas verticales y horizontales Corrientes convectivas adyacentes a placas verticales y horizontales. (a) Un fluido adyacente a una superficie vertical con temperatura uniforme. (b) La temperatura de la superficie vertical es incrementada y se crean las corrientes convectivas. (c) Una superficie horizontal calentada y encarada hacia arriba. (d) Una superficie horizontal calentada y encarada hacia abajo.

El estudio de la convección natural se basa de dos principios de la mecánica de fluidos: conservación de masa, conservación de momento y del principio de termodinámica que es la conservación de la energía.

Las ecuaciones de los principios mencionados se reducen al tomar en cuenta las siguientes suposiciones:

En la convección natural se tiene un parámetro llamado coeficiente volumétrico de expansión termal, ß. Dicho coeficiente define la variación del volumen cuando se cambia la temperatura, es decir, la expansión de las partículas para tener convección natural.

De las tres ecuaciones diferenciales resulta el número adimensional de Grashof, Gr, que sirve para determinar el coeficiente de conectividad en convección natural. El número de Grashof es similar al número de Reynolds, es decir, tienen el mismo significado físico (relación de fuerzas de movimiento entre fuerzas de resistencia o viscosas); el número de Grashof es utilizado en convección natural mientras que el número de Reynolds se emplea en convección forzada.

A través de los años se ha encontrado que los coeficientes medios de transferencia de calor por convección natural pueden representarse, para diversas situaciones, en la forma funcional siguiente: donde el subíndice f indica que las propiedades en los grupos adimensionales se evalúan a la temperatura de película

Superficies isotermas Los números de Nusselt y Grashof en paredes verticales, se forman con la altura de la superficie L como longitud característica. La transferencia de calor en cilindros verticales puede calcularse con las mismas relaciones de las placas verticales si el espesor de la capa límite no es grande comparado con el diámetro del cilindro.

El criterio general es que un cilindro vertical puede tratarse como una placa plana vertical cuando donde D es el diámetro del cilindro. Los valores de las constantes para superficies isotermas, con las referencias apropiadas para una consulta más amplia, se dan en la Tabla 7.1

Hay algunos indicios a partir del trabajo analítico de Bayley, de que puede ser preferible la relación Churchill y Chu han dado relaciones más complicadas, que son aplicables en un intervalo más amplio del numero de Rayleigh:

Cilindros horizontales Los valores de las constantes C y m se dan en la Tabla 7.1. Las predicciones de Morgan (en la Tabla 7.1) son más fidedignas para valores de Gr Pr del orden de 10m5. Churchill y Chu dan una expresión más complicada, pero que puede utilizarse en un intervalo más amplio de valores de Gr Pr: Para metales líquidos, la transferencia de calor desde cilindros horizontales puede calcularse, con:

Placas horizontales Se indican que el mejor acuerdo con los datos experimentales puede conseguirse calculando la dimensión característica con donde A es el área de la superficie y P su perímetro. Esta dimensión característica es también aplicable para formas planas no simétricas.

Flujo de calor constante Para la superficie caliente mirando hacia arriba Cuando la superficie caliente está mirando hacia abajo

Sólidos irregulares No hay una correlación general que pueda aplicarse a los sólidos irregulares. Los resultados indican que para un cilindro cuya altura sea igual al diámetro, puede usarse la Ecuación siguiente con C = 0,775 y m = 0,208. Los números de Nusselt y Grashof se evalúan utilizando el diámetro como dimensión característica. Lienhard presenta una descripción que toma como longitud característica la distancia que recorre una partícula fluida en la capa límite y utiliza, en el intervalo laminar, los valores de C = 0,52 y m = 4 para la Ec. (7.25).

Convección natural en superficies inclinadas Fujii e Imura han dirigido extensos experimentos con placas calientes en agua a distintos ángulos de inclinación. Se designa con 0 el ángulo que la placa forma con la vertical, con ángulos positivos indicando que la superficie caliente mira hacia abajo, según se muestra en la Figura siguiente. Para la placa inclinada con la cara caliente mirando hacia abajo, con flujo de calor aproximadamente constante, se obtuvo la siguiente correlación para el número de Nusselt medio:

En la Ecuación anterior todas las propiedades excepto ß se evalúan a la temperatura de referencia Te, definida por

Ecuaciones simplificadas para el aire En la Tabla siguiente se dan las ecuaciones simplificadas para el coeficiente de transferencia de calor desde distintas superficies al aire a presión ambiente y temperaturas moderadas. Estas relaciones pueden extenderse a presiones más altas o más bajas multiplicando por los factores siguientes:

Convección natural en esferas Yuge recomienda la siguiente relación empírica para la transferencia de calor por convección natural desde esferas al aire: Las propiedades se evalúan a la temperatura de película y se espera que esta relación sea aplicable fundamentalmente para los cálculos de la convección natural en gases.

Convección natural en espacios cerrados Los fenómenos de corrientes de convección natural en el interior de un espacio cerrado son ejemplos interesantes de sistemas fluidos muy complejos que pueden dar lugar a soluciones analíticas, empíricas y numéricas.

Considérese el sistema mostrado en la Figura, donde un fluido está encerrado entre dos placas verticales separadas una distancia ς.

Según MacGregor y Emery ClS], al imponer en el fluido una diferencia de temperatura ∆Tp = T1 – T2 se originará una transferencia de calor con las corrientes, mostradas de forma aproximada en la Figura siguiente. En esa figura, el número de Grashof se ha calculado según

Para números de Grashof muy bajos, existen pequeñas corrientes de convección natural y la transferencia de calor tiene lugar principalmente por conducción a través de la capa límite. Según crece el número de Grashof, se van encontrando diferentes regímenes de flujo, como se indica, con un incremento progresivo de la transferencia de calor, como se expresa por medio del número de Nusselt

Aunque aún permanecen abiertas algunas cuestiones, pueden utilizarse algunos experimentos para predecir la transferencia de calor en muchos líquidos en condiciones de flujo de calor constante. Las correlaciones empíricas obtenidas fueron: