1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.

Slides:



Advertisements
Presentaciones similares
TECNOLOGICO DE ESTUDIOS SUPERIORES DE TIANGUISTENCO
Advertisements

ELECTROSTATICA.
Potencial Eléctrico y Capacitancia
Electrostática.
El campo eléctrico en la materia
1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.
Electrostática.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Electricidad y magnetismo
1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.
OBJETIVO FUNENTES DE MAGNETISMO
LEY DE GAUSS Y POTENCIAL ELECTRICO
+q A La partícula de carga +q se coloca en reposo en el punto A. Es correcto afirmar que la partícula: a. Ganará energía cinética b. Se moverá en linea.
La ley de Gauss La ley de Gauss constituye una de las leyes fundamentales de la Teoría Electromagnética. Se trata de una relación entre la carga encerrada.
PROBLEMAS DE POTENCIAL CON VALORES EN LA FRONTERA
Universidad Nacional Autónoma de México Facultad de Ingeniería.
1.8 Energía potencial eléctrica y definición de potencial eléctrico.
Cantidad de líneas de campo que atraviesa la superficie ds.
PROBLEMAS ELECTROSTÁTICOS
Cap. 24 – La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb  Gauss Son equivalentes Pero ambas tienen situaciones.
TEORÍA ELECTROMAGNÉTICA
Ley de Gauss.
TAREA 5. LEY DE GAUSS FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO
ECUACIONES DE MAXWELL Y CONDICIONES DE FRONTERA.
ELECTRICIDAD Y MAGNETISMO
POTENCIAL ELÉCTRICO Y CAMPO
Fuentes de Campos Magnéticos
Tecnologías Informáticas
INTRODUCCIÓN ECUACIONES DE MAXWELL Hacia 1860, James Clerk Maxwell dedujo que las leyes fundamentales de la electricidad y el magnetismo podían resumirse.
Flujo Eléctrico El campo eléctrico debido a una distribución continua de cargas siempre puede calcularse a partir del campo generado por una carga puntual,
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud.
Menu de hoy Continuamos con campos Eléctricos de distribuciones de carga continua Flujo Eléctrico Ley de Gauss Aplicaciones de la ley de Gauss Conductores.
POTENCIAL ELÉCTRICO UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI
Cesar Fabián Rojas Moya G12NL23
Potencial Eléctrico.
Ley de Gauss Física II.
Energía potencial eléctrica
Potencial eléctrico. El trabajo realizado por la fuerza aplicada en un desplazamiento dl será:
Temas de hoy • Potencial Eléctrico definido
INTERACCION ELECTROSTATICA EN EL VACIO
ELIZETH JOHANNA FLORIAN CASTRO COD G12NL11.
Grupos de prácticas de laboratorio
Por fin llegamos al primer átomo !!!
Potencial Eléctrico Continuación
INTERACCION MAGNETOSTATICA EN EL VACIO
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
APUNTES DE CLASE TALLER LUNES 7 DE MARZO 2011 SILVIA JULIANA HERNANDEZ G10NL22SILVIA.
Intensidad del campo eléctrico
Ecuaciones de Maxwell G11NL25william.
C E Circulación y energía por unidad de carga. Circulación en un campo vectorial: Es otra forma de obtener información sobre las características del campo.
El otro gran concepto es el de energía. Otra manera de mirar la misma realidad. El concepto de potencial eléctrico está intimamente relacionado al concepto.
Ecuaciones de Maxwell Maxwell demostró la existencia de ondas electromagnéticas a partir de las leyes generalizadas de la electricidad y el magnetismo,
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 1. Electrostática.
G10NL26 G11NL31  Relaciona el flujo a través de una superficie cerrada y la carga eléctrica encerrada en esta superficie.  Constituye una de las leyes.
El campo magnético en el vacío.
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.
El campo eléctrico en la materia
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Sindy Leguizamón Laura Tello
Tarea # 2 Encontrar la solución a la siguiente ecuación diferencial usando la transformada de Laplace: con las siguientes condiciones iniciales:
+q A La partícula de carga +q se coloca en reposo en el punto A. Es correcto afirmar que la partícula: a. Ganará energía cinética b. Se moverá en linea.
Centro de Estudios Tecnológicos, Industrial y de Servicios No
FÍSICA II GRADO Ingeniería Mecánica
UNIDAD 2 LEY DE GAUSS.
Carga y flujo eléctrico Conductores en equilibrio electrostático Energía potencial eléctrica Carga y flujo eléctrico Conductores en equilibrio electrostático.
Instituto Nacional de Astrofísica, Óptica y Electrónica
Instituto Nacional de Astrofísica, Óptica y Electrónica
Instituto Nacional de Astrofísica, Óptica y Electrónica
Transcripción de la presentación:

1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y las ecuaciones de Maxwel

Capítulo 2: ELECTROSTÁTICA El potencial electrostático El gradiente del potencial electrostático La ley de Gauss La divergencia del campo eléctrico. Forma diferencial de la ley de Gauss El rotacional del campo electrostático Las ecuaciones de Maxwell para la electrostática La ecuación de Poisson y la ecuación de Laplace La energía y el trabajo en el campo electrostático Los aislantes y los conductores El campo eléctrico en los conductores Los métodos de solución de problemas electrostáticos

Si la integral depende de la trayectoria de P 1 a P 2, podemos obtener trabajo del campo, llevando la carga al punto P 2 por una trayectoria y regresándola a P 1 por otra. De ida agarramos una trayectoria en la que se haga menos trabajo y de regreso una donde se haga más. Esto no es imposible, no viola ninguna ley. De hecho hay casos en que sucede. Parte del sistema pierde energía y así la ley de conservación de la energía se cumple. Sin embargo, en electrostática todas las cargas están “fijas” y no hay forma de que el sistema pierda energía Por eso debemos esperar que en el caso electrostático la integral no dependa de la trayectoria. O lo que es lo mismo que la integral sobre una trayectoria cerrada sea cero The Feynam Lectures on Physics. Sección 4.3

X Y Z

0 0 0

En el caso de una carga puntual la integral no depende de la trayectoria o lo que es lo mismo La integral sobre cualquier trayectoria cerrada es cero

Un campo con estas características se llama CONSERVATIVO

El que el campo electrostático sea conservativo se debe al carácter radial de la fuerza electrostática. Se debe a la simetría y dirección de la fuerza electrostática

Haciendo lo mismo en la dirección Y y Z, llegamos a la conclusión que Es decir, que

es una integral más fácil de hacer que y ya fácilmente E se encuentra derivando

OJO: Esto es válido para el campo electrostático, que es un campo conservativo