Daniel Mateo Aguirre B. G2E03Daniel08/06/2015.   La ecuación de Schrödinger desempeña el papel de las leyes de Newton y la conservación de la energía.

Slides:



Advertisements
Presentaciones similares
QUIMICA CUANTICA: INTRODUCCION
Advertisements

MODELO MECÁNICO CUÁNTICO DEL ÁTOMO
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA UNEFA.
Probabilidad, Funciones de onda y la interpretacion de Copenague
Representación en espacio de estado
TEORIA CUANTICA ATOMO JAVIER DE LUCAS.
DEFINICIONES Y TERMINOLOGÍA
La Ecuación de Schrödinger
Modelo Mecano-Cuántico
Mecánica cuántica y orbitales atómicos Ing. Carmen López Castro.
Estructura de la materia
Mecanocuántico del Átomo
NÚMEROS CUÁNTICOS Para poder describir la distribución de los electrones en el hidrógeno y otros átomos la mecánica cuántica necesita de 3 números cuánticos.
Modelo actual y Números Cuánticos
CONCEPTOS BÁSICOS DE MECÁNICA CUÁNTICA
Clase # 2: Campo de Fuerza
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica
Modelo atómico actual.
FÍSICA DE SEMICONDUCTORES Aplicaciones de la Ecuación de Schrödinger
Fundamentos de Física Moderna Modelos Atómico de Bohr para el átomo de hidrógeno Nombre: Camilo Andrés Vargas Jiménez G2E32Camilo- 10/06/2015.
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica
Aplicaciones de la Ecuación de Schrodinger
UN Nombre: Fabian Andres Robayo Quinbtero Fecha: 14/06/2015
Fundamentos de Física Moderna Mecánica Cuántica
Modelo cuantico Ross Alejandra Silva Torres Ingeniería eléctrica
Aplicaciones de la Ecuación de Schrodinger
Fundamentos de Física Moderna Mecánica Cuántica
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Lizeth Andrea Anzola Fernández -fsc01Lizeth- Fecha.
Modelos matemáticos y solución de problemas
Universidad Nacional de Colombia Fundamentos de física moderna Nicolás Galindo Gutiérrez Código: G1E09Nicolas ECUACIÓN DE SCHRÖDINGER APLICACIONES.
UN Nombre: Camilo Andrés Vargas Jiménez -G2E32Camilo- Fecha: 13/06/2015.
FÍSICA DE SEMICONDUCTORES Aplicaciones de la Ecuación de Schrodinger UN Paola Marcela Medina Botache -fsc17Paola- Junio 20.
Fundamentos de Física Moderna Mecánica Cuántica UN Luis Felipe Cepeda Vargas -G1E05Luis- 15/06/2015.
Ross Alejandra Silva Torres Ingeniería eléctrica física moderna ECUACION DE SCHODINGER.
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica
Fundamentos de Física Moderna Mecánica Cuántica
UN Joan Camilo Poveda Fajardo G1E21Joan 2015
Andrés Camilo Suárez Leaño 17/06/2015
Números cuánticos.
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Carlos Francisco Pinto Guerrero -fsc28Carlos
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Nombre -Juan Felipe Ramírez tellez- Fsc31Juan Junio 12.
UN ERIK ESTEBAN CARVAJAL GONZÁLEZ G2E08Erik Junio de 2015
Fundamentos de Física Moderna Mecánica Cuántica
PROPIEDADES ONDULATORIAS DE LA MATERIA Daniel Mateo Aguirre Bermúdez G2E03Daniel 08/06/2015.
UNIVERSIDAD NACIONAL DE COLOMBIA Oswaldo Ivan Homez Lopez G1E13Oswaldo
FUNDAMENTOS DE FÍSICA MODERNA APLICACIONES DE LA ECUACIÓN DE SCHRÖDINGER DOMINGO ALFONSO CORONADO ARRIETA G1E06DOMINGO FISICA MODERNA.
Aplicaciones de la Ecuación de Schrödinger
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Juan Sebastian Martinez Rugeles -fsc15Juan
FUNDAMENTOS DE FÍSICA MODERNA APLICACIONES DE LA ECUACIÓN DE SCHRODINGER UN Nombre: Camilo Andrés Vargas Jiménez -G23E32Camilo- Fecha: 13/06/2015.
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Diego Antonio Gómez Prieto fsc13Diego Junio 12/15.
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica
Fundamentos de Física Moderna Mecánica Cuántica Erik Esteban Carvajal Gonzalez G2E08Erik Junio 2015.
FUNDAMENTOS DE FÍSICA MODERNA Aplicaciones de la Ecuación de Schrodinger UN Luis Felipe Cepeda Vargas -G1E05Luis- 15/06/2015.
Fundamentos de Física Moderna Mecánica Cuántica
Brigith Vanessa García Lozano -G2E13Brigith- 14-Junio-2015
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Juan Camilo Calvera Duran -fsc06Juan- Junio 2015.
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna.
FÍSICA DE SEMICONDUCTORES MECÁNICA CUÁNTICA
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Juan Camilo Ramirez Ayala código: 30 6 de junio del 2015.
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN ANDRES REY CABALLERO -FSC33ANDRES- 19/06/2015.
Una nueva descripción del átomo según la Mecánica Ondulatoria
FUNDAMENTOS DE FÍSICA MODERNA – MECÁNICA CUÁNTICA - ANDRÉS FELIPE ROJAS RAMÍREZ G1E24ANDRES
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica
Fundamentos de Física Moderna Mecánica Cuántica
Modelos atómicos hasta el actual
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica UN Ricardo Bernal Becerra -fsc03Ricardo- Fecha.
Aplicaciones de la Ecuación de Schrödinger
ECUACIONES DIFERENCIALES. ECUACION DIFERENCIAL Una ecuación diferencial es una ecuación en la que intervienen derivadas de una o más funciones desconocidas.ecuaciónderivadas.
El estado cuántico es la descripción del estado físico que en un momento dado tiene un sistema físico en el marco de la mecánica cuántica. Un estado cuántico.
Octava sesión Átomos hidrogenoides (2) Orbitales.
Transcripción de la presentación:

Daniel Mateo Aguirre B. G2E03Daniel08/06/2015

  La ecuación de Schrödinger desempeña el papel de las leyes de Newton y la conservación de la energía de la mecánica clásica, -es decir, predice el comportamiento futuro de un sistema dinámico-. Se trata de una ecuación de onda en términos de la función de onda, que predice analíticamente y con precisión, la probabilidad de eventos o resultados. El resultado detallado no está estrictamente determinado, pero dado un gran número de eventos, la ecuación de Schrödinger predice la distribución de los resultados. Ecuación de Schrödinger

  Para aplicar el carácter ondulatorio del electrón, se define una función de onda, y, y utilizando la ecuación de onda de Schrödinger, que matemáticamente es una ecuación diferencial de segundo grado, es decir, una ecuación en la cual intervienen derivadas segundas de la función Y : Ecuación de Schrödinger

  Al resolver la ecuación diferencial, se obtiene que la función y depende de una serie de parámetros, que se corresponden con los números cuánticos, tal y como se define en el modelo atómico de Bohr Ecuación de Onda

  Contiene toda la información medible sobre una particula  ψ * ψ evaluada en todo el espacio = 1 ( se refiere a que si una partícula existe, la probabilidad de encontrarla en algún lugar debe ser 1)  Es una función continua  Permite calcular la energía con la ecuación de Schrödinger  Establece la distribución de probabilidad en tres dimensiones  Para una particula libre en una onda senoidal, implica un momento determinado y una posición indeterminada Propiedades

  Con el fin de representar un sistema observable de manera física, la función de onda debe satisfacer ciertas restricciones:  1. Debe ser una solución de la ecuación de Schrodinger.  2. Debe ser normalizable. Esto implica que la función de onda se aproxima a cero cuando x se aproxima a infinito.  3. Debe ser una función continua de x.  4. La pendiente de la función en x, debe ser continua.  Específicamente debe ser continua.  Estas limitaciones se aplican a las condiciones de contorno en las soluciones, y en el proceso de ayudar a determinar los valores propios de la energía. Limitaciones

  Schr%C3%B6dinger Schr%C3%B6dinger  astr.gsu.edu/hbasees/quantum/schr.html astr.gsu.edu/hbasees/quantum/schr.html  astr.gsu.edu/hbasees/quantum/schr.html astr.gsu.edu/hbasees/quantum/schr.html BIBLIOGRAFÍA