EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL11 EDGAR ALEJADRO Universidad Nacional de Colombia Depto de Física Mayo 2011.

Slides:



Advertisements
Presentaciones similares
EM2011 Serie de Problemas 02 -Aplicaciones-
Advertisements

EM2011 Serie de Problemas 02 -Aplicaciones-
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL3 Walther Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL08YUDY Universidad Nacional de Colombia Dpto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G9NL31JUANSAAB Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL24 JUANA PACHECO Universidad Nacional de Colombia Depto de Física Mayo 2011.
PARTES Y TESTEO DE COMPONENTES
ELECTROMAGNETISMO Y LEY DE FARADAY TAREA No 4 G09N20Edna
TEMA 5 ELECTRICIDAD Y ELECTROMAGNETISMO
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL32 SEBASTIAN Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EL Espectro Electromagnético
1. LINEA DE TRANSMISION Es un sistema conductor metálico que se utiliza para transferir energía eléctrica de un lugar a otro. Una línea de transmisión.
EM2011 Serie de Problemas 02 -Aplicaciones-
Instituto Politécnico Nacional esime Zacatenco Ing
Maquinas de corriente continua.
INDUCCIÓN ELECTROMAGNÉTICA
FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO
Ciencias Físicas 4.
EM2011 Serie de Problemas 02 -Aplicaciones- G _NL__ nombre Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL22 PAOLA Paola Juliana Olivares Sánchez Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G09NL05Juan Juan Camilo Arévalo Mutis Universidad Nacional de Colombia Depto de Física Mayo 2011.
ELECTROMAGNETISMO Y LEY DE FARADAY
EM2011 Serie de Problemas 02 -Aplicaciones-
Corriente alterna 1. Generador de corriente alterna. Frecuencia y fase. Valores eficaces. Fasores. 2. Circuito con resistencia, condensador o bobina. Impedancia.
LAS ANTENAS.
ELECTRICIDAD Y ELECTRÒNICA
Electromagnetismo y ley de Faraday
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL8 Diego Universidad Nacional de Colombia Depto de Física Mayo 2011.
Adriana María Romero Romero G2N24Adriana Código
EM2011 Serie de Problemas 02 -Aplicaciones-
Electromagnetismo y ley de Faraday
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL36 Ian Sarasty Medina Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G10NL22SILVIA SILVIA JULIANA HERNANDEZ REYES Universidad Nacional de Colombia Depto de Física Mayo 2011.
PRINCIPIO DE FUNCIONAMIENTO Y APLICACIONES DE UN KLISTRON Y MAGENTRON
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL31JOANNA Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL24 Juan Sebastián Quinche Velandia Cód Universidad Nacional de Colombia Depto. de Física Mayo.
EM2011 Serie de Problemas 02 -Aplicaciones- G12NL39SANTIAGO Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL24 Iván Felipe Marín Rivas Universidad Nacional de Colombia Depto de Física Mayo 2011.
Un campo magnético induce una corriente en un conductor, siempre que el campo magnético sea variable.
EM2011 Serie de Problemas 01 -Problemas Fundamentales- G09NL15 Juan Manuel Flórez Universidad Nacional de Colombia Dpto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL14ANDRES Universidad Nacional de Colombia Dpto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G09 NL44 Estefanía Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 01 -Problemas Fundamentales- G09NL08 Edwin Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL41LUISA Universidad Nacional de Colombia Depto. de Física Mayo 2011.
Instituto Politécnico Nacional esime Zacatenco Ing
EM2011 Serie de Problemas 02 -Aplicaciones-
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL21Jessica Hernandez Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G10NL46Alejandro Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G _NL__ nombre Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G10NL46Alejandro Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL47jessica Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G09NL09FC Universidad Nacional de Colombia Depto. de Física Mayo 2011.
Paula Angélica Solarte Blandón G2 N28
PRINCIPIO DEL ESPECTROMETRO DE MASAS MUESTRA DEL MATERIAL Calienta hasta vaporizar la muestra Se ioniza los diferentes átomos del compuesto Iones cruzan.
EM2011 Serie de Problemas 02 -Aplicaciones- G09NL30 Mario Rubiano Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G _NL__ nombre Universidad Nacional de Colombia Depto de Física Mayo 2011.
Conceptos de mantenimiento de maquinas electricas
FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO
Solución Parcial III Daniela Alfonso Carrizosa G1N02daniela.
EM2011 Serie de Problemas 02 -Aplicaciones-
 Observar la desviación del rayo de electrones en campos eléctricos de tensión continua y alterna.  Observar la desviación del rayo de electrones bajo.
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL01 Pamela Aguirre Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G12NL33SEBASTIAN SEBASTIAN ROMAN Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL17BRAYANN GONZÁLEZ Universidad Nacional de Colombia Depto de Física Mayo 2011.
03 1. ¿Cómo funcionan las antenas? 2. Parámetros de una antena
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL16 Sergio Gaitán Pinzón Universidad Nacional de Colombia Depto de Física Mayo 2011.
ESPECTROSCOPÍA Tarea 3 Andrés Amorocho Código
ESPECTROSCOPIA DAVID HERNANDO DIAZ DEFINICIÓN es el estudio de la interacción entre la radiación electromagnética y la materia, con absorción.
ESPECTROSCOPÍA David Wilson Romero Guzmán Universidad Nacional de Colombia Fundamentos de Física Moderna I.
ESPECTROSCOPIA JUAN CAMILO ANDRADE – COD: Docente: Jaime Villalobos.
Transcripción de la presentación:

EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL11 EDGAR ALEJADRO Universidad Nacional de Colombia Depto de Física Mayo 2011

Aplicaciones 1.Dibuje un esquema que ilustre el principio de funcionamiento de un espectrómetro de masas y explicite dónde están las leyes de Maxwell

El espectrómetro, o espectrógrafo, es un aparato capaz de analizar el espectro característico de un movimiento ondulatorio. Se aplica a variados instrumentos que operan sobre un amplio campo de longitudes de onda. Un espectrómetro óptico o espectroscopio, es un instrumento que sirve para medir las propiedades de la luz en una determinada porción del espectro electromagnético. La variable que se mide generalmente es la intensidad luminosa pero se puede medir también el estado de polarización electromagnética, por ejemplo. La variable independiente suele ser la longitud de onda de la luz, generalmente expresada en submúltiplos del metro, aunque alguna vez pueda ser expresada en cualquier unidad directamente proporcional a la energía del fotón, como lafrecuencia o los electrón-voltios, que mantienen un relación inversa con la longitud de onda. Se utilizan espectrómetros en espectroscopia para producir líneas espectrales y medir sus longitudes de onda e intensidades.luzespectro electromagnéticointensidad luminosapolarización electromagnéticalongitud de ondaenergíafrecuenciaelectrón-voltiosespectroscopialíneas espectraleslongitudes de onda En general, un instrumento concreto sólo operará sobre una pequeña porción de éste campo total, debido a las diferentes técnicas necesarias para medir distintas porciones del espectro. Por debajo de las frecuencias ópticas (es decir, microondas, radiofrecuencia yaudio), el analizador de espectro es un dispositivo electrónico muy parecido.microondasradiofrecuenciaaudioanalizador de espectro

Aplicaciones 2. Dibuje un esquema que ilustre el principio de funcionamiento de un magnetrón (el corazón de un horno de microondas) de masas y explicite dónde están las leyes de Maxwell Un magnetrón es un dispositivo que transforma la energía eléctrica en energía electromagnética en forma de microonda. Fue desarrollado hacia el final de los años 30 con el fin de alimentar al radar mediante una fuente radioeléctrica potente (varios cientos de vatios) y con una longitud de onda centimétrica, por lo tanto unas frecuencias elevadas para la época de 300 MHz a 3 GHz (ondas decimétricas) y más allá de 3 GHz (ondas centimétricas).energía eléctricaenergía electromagnéticamicroondaradarvatioslongitud de onda centimétricaondas decimétricas Los osciladores de tubos utilizados anteriormente eran incapaces de proporcionar tanta potencia (lo que suponía un alcance insuficiente de los radares), a frecuencias tan elevadas (de donde una discriminación angular débil). Básicamente consiste en un cilindro metálico, en el que hay dispuestas de forma radial una serie de oquedades o cavidades resonadoras, que se comunican con una cavidad central mayor, en cuyo eje existe un filamento metálico de titanio.titanio El cilindro se comporta como ánodo y el filamento central como cátodo. El filamento, conectado al polo negativo de una fuente de corriente continua, se pone incandescente y emite electrones por efecto termoiónico. El cilindro se conecta al polo positivo y atraerá a los electrones. Todo este conjunto se encuentra dispuesto entre los polos de un potente electroimán.filamentoelectrones Por acción de este potente campo magnético, los electrones, en lugar de ir en línea recta hacia el cilindro, al ser atraídos hacia las oquedades, realizan una trayectoria circular y, al penetrar en ella, se movilizan en remolino. El espacio abierto entre la placa y el cátodo se llama el espacio de interacción. En este espacio los campos eléctricos y magnéticos interactúan para ejercer la fuerza sobre los electrones. Dado que toda carga eléctrica crea a su alrededor un campo electromagnético, todos los electrones en movimiento circular en las oquedades producen ondas electromagnéticas –en este caso microondas– perpendiculares al desplazamiento de los mismos y de una frecuencia dependiente del tamaño de las oquedades. Sin embargo, la frecuencia no es precisamente controlable, varía con los cambios en la impedancia de carga, con cambios en la intersidad, y con la temperatura del tubo.Mediante un cable coaxial, se transmite la energía a un director o radiador, constituido por una antena. ¿Que ocurre dentro de la placa? 1 1 La forma de las cavidades u oquedades varía, se muestra en la Figura 3. El cable de salida suele ser una sonda o loop se extiende en una de las cavidades a punto y junto a una guía de onda o en la línea coaxial. a. De tipo ranura b. De tipo paletas c. De tipo sol naciente d. De tipo agujero y rauran

El proceso que se produce se puede dividir en cuatro fases : - Fase 1: la producción y la aceleración de un haz de electrones Cuando no existe campo magnético, se produce un movimiento uniforme y directo de los electrones desde el cátodo a la placa. Si la intensidad del campo magnético aumenta la curva que dibujan los electrones es más pronunciada. Cuando se alcanza el valor del campo crítico, los electrones son desviados lejos de la placa y la intensidad en la placa cae. Cuando la intensidad de campo se hace aún mayor, las caidas de corriente de placa llegan a cero. - Fase 2: La velocidad de modulación del haz de electrones El campo eléctrico en el oscilador magnetrón es el producto de los campos de CA y CC. El campo de CC se extiende radialmente a partir de segmentos adyacentes del ánodo al cátodo. Los campos de corriente alterna, que se extienden entre los segmentos adyacentes, se muestran en un instante de la magnitud máxima de una alternancia de las oscilaciones del rf que se producen en las cavidades. Los electrones que se mueven hacia los segmentos de ánodo cargado positivamente se aceleran. Obtienen una mayor velocidad tangencial. Por otro lado los electrones que se mueven hacia los segmentos con carga negativa reducen su velocidad. Como consecuencia de una velocidad tangencial menor. - Fase 3: Formación de un "espacio de carga de la rueda" La acción acumulativa de muchos electrones regresando al cátodo, mientras que otros se mueven hacia el ánodo forma un patrón parecido a los radios de una rueda en movimiento conocido como "el espacio de carga de la rueda". La rueda de carga espacial gira alrededor del cátodo a una velocidad angular de 2 polos (segmentos de ánodo) por ciclo del campo de corriente alterna. Esta relación de fase permite la concentración de electrones para liberar de forma permanente energía para mantener las oscilaciones de radiofrecuencia. - Fase 4: Distribuir la energía para el campo de ca Recordemos que un electrón en movimiento contra un campo E es acelerado por el campo y toma la energía del campo. Además, si prescindimos de la energía de un electrón en un campo y se ralentiza el movimiento en la misma dirección que el campo (de positivo a negativo). El electrón pasa la energía de cada cavidad a medida que pasa el tiempo y llega al ánodo cuando su energía se gasta. Por lo tanto, el electrón ha ayudado a mantener las oscilaciones, ya que ha tomado la energía del campo de cd y le ha dado al campo de corriente alterna. Normalmente, para que los imanes permanentes no dejen de funcionar por alcanzar la temperatura de Curie, los magnetrones industriales se enfrían con agua, o en su defecto, con un sistema de dispersión que consiste en placas metálicas, que a la vez filtran las ondas electromagnéticas producidas, gracias al principio de resonancia.temperatura de Curieresonancia El Magnetrón puede producir salidas de potencia continua de más de 1 kW de potencia a una frecuencia de 1 GHz. La salida baja a medida que la frecuencia aumenta. Por ejemplo, a los 10 GHz, un magnetrón puede producir de 10 a 20 vatios de la radio frecuencia de salida continua.

Diseño Basado en la Leyes del electromagnetismo y resto de información que Usted ha aprendido en este curso de física diseñe un dispositivo, aparato, sistema, etc. PISTA: dele rienda suelta a su imaginación sin MAP.

Un posible esquema de una aplicación de las leyes del electromagnetismo seria utilizar la fuerza que se origina al hacer pasar corriente por una bobina para diseñar un modelo de plataforma impulsora que permita aprovechar esta fuerza en el arranque en por ejemplo un nuevo vehiculo aprovechando el torque que se genera para hacer mover las ruedas Se induciría un campo magnético alrededor del eje y este a su vez permitira que el auto pueda moverse y seria una forma de contribuir con el medio ambiente.

Observaciones Esta tarea es para ser entregada en la semana del 23 al 26. Grupo 10 Lunes 23 de mayo Grupo 12Martes 24 de mayo Grupo 09Jueves 26 de mayo