ALUMNOS : MUÑANTE REVILLA, EDGAR MORI BAZAN, NORKA.

Slides:



Advertisements
Presentaciones similares
EMPRENDIMIENTO COSTOS BÁSICOS.
Advertisements

La minimización de los Costos
La Maximizaciòn del Beneficio
La oferta de la industria
La maximización del beneficio de la empresa
COSTOS ESTÁNDAR. Concepto de Costos Estándar.
INVESTIGACIÓN DE OPERACIONES I Solución Gráfica de un problema de PL
Minimización de Costos
COSTOS EN TOMA DE DECISIONES
TEMA 8 <<FUNCIONES>>
Tema 3: Introducción a la programación lineal
Expresión de un problema de programación lineal Aplicaciones de la programación lineal Soluciones de un problema lineal Resolución gráfica de un problema.
KRIGING.
Ejercicios de costos Solución.
Matemáticas Acceso a CFGS
Funciones de dos variables: Dominio de una función Curvas de Nivel
Utilidad, Precio de Venta, Costos. Solución de problema.
Valuación de efectivo descontado
La Derivada. Ya vimos: los conceptos, métodos ó instrumentos necesarios para establecer el “comportamiento” de una función.  en un entorno de x o [ 
Programación Lineal Unidad 1 Parte 3.
Clases IES 424 Macroeconomía parte 2. Conceptos Las variables de flujo, son aquellas que se expresan en relación a un lapso de tiempo. Por ejemplo,
TEMA: ECUACIONES CUADRÁTICAS
Profesora : María Cecilia Palma Valenzuela Fecha: 15/08/2011
PROGRAMACIÓN LINEAL.
ACCESO A UNIVERSIDAD +25 ECONOMÍA
ACCESO A UNIVERSIDAD +25 ECONOMÍA
Punto de equilibrio en la empresa
Punto de equilibrio en la empresa
Modelos Cuantitativos
Tema 8 APLICACIONES DE LAS DERIVADAS.
3.3.-LA ELECCIÓN DE LA PRODUCCIÓN EFICIENTE
ECUACIONES CUADRÁTICAS
Trabajo puntos de equilibrio
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS ESCUELA DE POST GRADO MAESTRÍA EN ADMINISTRACIÓN CON MENCIÓN EN GESTIÓN EMPRESARIAL KIWI COMPUTER Curso: METODOS.
Punto de equilibrio Nombre: Jaime Sleman Gonzalo Neira Víctor Carrasco
ANUALIDADES ORDINARIAS (VENCIDAS) Y ANTICIPADAS
Toma de Decisiones Toda toma de decisión empieza con la detección de un problema. Para tomar la decisión correcta, se debe: Definir el problema en forma.
Modelos Cuantitativos
Tema: Ecuaciones de primer grado con una variable.
Parte III. Teoría de la Empresa
El costo de capital marginal ponderado (CCMP)
COSTOS ESTIMADOS Y COSTOS ESTÁNDAR.
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS
Multiplicadores de Lagrange
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS MAESTRIA EN ADMINISTRACION CON MENCION EN GESTION EMPRESARIAL METODOS CUANTITATIVOS BALTAZAR HERMOZA, Cecilia.
MÉTODOS DE ANÁLISIS EN LA TOMA DE DECISIONES EXISTEN PROCEDIMIENTOS DE ORDEN MATEMÁTICO, FINANCIERO, ECONÓMICO, ESTADÍSTICO ENTRE OTROS, PARA LA TOMA DE.
Pruebas de hipótesis.
2.3.4) OFERTA: Minimización de los costos. Curvas de costo  Según cómo se comporte la productividad del factor variable, así se comporta el costo variable.
Microeconomía Docente: Massiel Torres Marzo, 2014.
FUNCIONES LINEÁLES Y CUÁDRATICAS
Contabilidad de Costos
Análisis del consumidor
ESTIMACIÓN DE PARÁMETROS
Prof. Juan José Bravo B., M.Sc. ©
RODRIGO ESTUPIÑÁN GAITÁN
EII405 Investigación de operaciones
Método Simplex Es un procedimiento sistemático y eficiente para encontrar y probar soluciones situadas en los puntos extremos de la región de soluciones.
Resolución Gráfica de PPL
Resolución de Problemas Método Gráfico
 E Expresión de un problema de programación lineal  A Aplicaciones de la programación lineal  S Soluciones de un problema de programación lineal.
ECUACIONES DE PRIMER GRADO INSTITUTO TECNICO AGROPECUARIO
1.  Al transcurrir los años nos damos cuenta que para emprender con una empresa se necesita muchos conocimientos de administración entre otras cosas.
BIENVENIDOS A ESTE VIDEO TUTORIAL DE LA MATERIA DE INVESTIGACION DE OPERACIONES… … ACONTINUACION EL TEMA QUE TRATAREMOS EN ESTE VIDEO TUTORIAL ES EL DE.
TEMA I Teoría de Circuitos
Método Simplex Es un procedimiento sistemático y eficiente para encontrar y probar soluciones situadas en los puntos extremos de la región de soluciones.
Ejemplo 1 Suponga un producto que requiere de unos costos fijos de $ 1,500,000.00, un costo variable unitario de $ 500,00 y un precio al concumidor de.
FLUJOS DE EFECTIVO.
Mayo de Se dice que una empresa es rentable cuando genera suficiente utilidad o beneficio, es decir, cuando sus ingresos son mayores que sus gastos,
Problema Dual INVESTIGACIÓN DE OPERACIONES. Problema Dual.
METODO DEL PUNTO ALTO Y DEL PUNTO BAJO
Transcripción de la presentación:

ALUMNOS : MUÑANTE REVILLA, EDGAR MORI BAZAN, NORKA

 En la tabla 2 el costo estándar de gastos indirectos asignados a las computadoras de escritorio para el ensamblado final es de $415. Muestre con claridad como se obtuvo esa cifra.

SE OBTIENE DE LA TABLA / 600 CPUS DE ESCRITORIO = 415 Gastos indirectos fijos totales (en miles)* Gastos indirectos fijos unitarios Prod.cajas ext Montaje de tarjetas Ensam.comp.escritorio ensamb.portatiles *sobre la base de una prod.mensual de 600 cpus de escritorio y 200 cpus portatiles

 (a)¿ Las unidades para escritorio hacen una aportación a las utilidades?. En otras palabras, en otras palabras, sabiendo que los costos de gastos indirectos son fijos a corto plazo ¿es mas alta la utilidad de la compañía de lo que sería si no se produjeran unidades para escritorio?

 Tenemos que: Utilidad = (Precio de vta. unitario * cantidad) – (costo unitario * cantidad)  En el caso de los cpus de escritorio es como sigue  Utilidad = ( )*600 =  Por lo tanto podemos apreciar que ha existido una perdida de por mes  Las unidades para escritorio no aportan a las utilidad por el contrario le genera mas gasto.

 (b) Un calculo correcto de las utilidades por unidad mostrará que la portátil es mas rentable que la de escritorio ¿significa esto que se deben producir mas portátiles (o solo portátiles ¿ ¿Por qué?

 Tenemos que:  Utilidades por unidad = precio unitario de vta. – costo unitario total  Utilidades por unidad = 1500 – 1640 = -140 (para escritorio)  Utilidades por unidad = = 180 (portátiles)  Si no se corrige se tendría que disminuir la producción o dejar de producir las de escritorio por que a más producción, mayor será la perdida que le genere a la empresa.

 Al contestar esta pregunta suponga que no es posible que se monten los circuitos con un subcontratista. formule una programación lineal para determinar la mezcla óptima de productos.

 X1 = Cantidad de cpus portátiles a producir  X2 = Cantidad de cpus de escritorio a producir  Max z = 1500X X2

Max z = 1400 X X2 S.a.X1 <= 2000 X2 <= 1800 X1 + 2x2 <= 4000 X1 + 5/6 X2 <= 2500

 Ejecute su modelo usando LINDO o cualquier paquete de programación lineal disponible y señale la mezcla optima de computadores de escritorio y portátiles. Para este problema se aceptan respuestas no enteras.

 Utilizando el Winqsb y lindo tenemos  Función objetivo = 3’928,572  X1 = Cpus portátiles  X2 = Cpus de escritorio

 Determine la mejor respuesta factible entera que se pueda lograr redondeando la respuesta de la pregunta 4 a los números enteros más cercanos.

 1429 Cpus portátiles  1286 Cpus de escritorio  Max z = 1400(1428)+ 1500(1286)  Max z =

 (a) retroceda y vuelva a calcular los “costos estándar” de la compañía utilizando las respuestas enteras obtenidas en la pregunta 5 y compárelos con los de la tabla 2

Gastos indirectos fijos totales (en miles)* Gastos indirectos fijos unitarios (actuales) Gastos indirectos fijos unitarios (con mezcla optima) Prod.cajas ext Montaje de tarjetas Ensam.comp.escritorio ensamb.portatiles Mezcla optima : 1429 portátiles y 1286 de escritorio

PARA ESCRITORIO PORTATILES Materiales directos Mano de obra directa Produccion de cajas externas2015 Montaje de tarjetas10090 Ensamblado final510 gastos indirectos fijos Produccion de cajas externas Llenado de tarjetas Montaje final TOTAL

 Comparando tenemos que: la producción de cajas reduce su costo en $4.02, lo mismo el montaje de tarjetas de $205 a $196. Igual sucede con el ensamb.comp. escritorio de 415 a 194 pero el ensamblaje de portátiles aumenta el costo en casi $46

 (b) ¿en cuanto es mayor la utilidad si se usa la nueva mezcla (si se usan las respuestas enteras de la pregunta 5) en comparación con la antigua es decir, 600 computadoras de escritorio y 2000 portátiles?

 Utilidad con antigua mezcla = -140 * *2000 = $  Utilidad unitaria = /2600=  Utilidad con la nueva mezcla = (( )*1429)+( )* 1286) =  Utilidad unitaria = / ( ) =  Podemos apreciar que la nueva mezcla nos reporta una utilidad mayor en $

 Supóngase que el subcontratista cobrará $110 por cada tarjeta de circuito para una computadora de escritorio y $100 por cada tarjeta para una computadora portátil. Kiwi le proporciona a los subcontratistas los materiales necesarios. ¿debe utilizar kiwi subcontratistas para montar las tarjetas de circuitos? Argumentar por que o por que no, sin formular ni resolver un nuevo programa lineal

sin subcontratista PARA ESCRITORIO PORTATILES Materiales directos Mano de obra directa Producción de cajas externas2015 Montaje de tarjetas10090 Ensamblado final510 gastos indirectos fijos Producción de cajas externas95 Llenado de tarjetas205 Montaje final TOTAL

 Al subcontratar el montaje de los circuitos tenemos que el costo por mano de obra se convierte en cero y los gastos fijos unitarios seria de 110 para cpus de escritorio y 100 para cpus portátiles el costo total unitario se reduce con la subcontratación por lo que resultaría conveniente subcontratar para incrementar las utilidades  Lo podemos ver en el siguiente cuadro

Con subcontratista PARA ESCRITORIO PORTATILES Materiales directos Mano de obra directa Producción de cajas externas2015 Montaje de tarjetas00 Ensamblado final510 gastos indirectos fijos25 Producción de cajas externas95 Llenado de tarjetas Montaje final TOTAL

 Ahora formule un programa lineal que incluya la subcontratación. En su formulación distinga entre las computadoras producidas con tarjetas de circuitos montadas interna y externamente. Soluciónelo usando LINDO o algún otro paquete de PL.

X1 = producción de portátiles sin subcontratación X2 = producción de portátiles con subcontratación X3 = Producción de comp.de escritorio sin subcontratación X4 = Producción de comp.de escritorio con subcontratación Min z = 1220X X X X4 S.a.X1 + X2 <= 2000 X3 + X4 <= 1800 X1 + X2 + 2X3 + 2X4 <= 4000 X1 + X2 + 5/6X3 + 5/6X4 <= 2500

 Tenemos que:  Resolviendo el modelo nos damos cuenta que es mas conveniente subcontratar ya que nos permite disminuir costos  El resultado es el siguiente  X2 = 2000 tarjetas para portátiles con subcontratación  X4 = 1800 tarjetas para escritorio con subcontratación  La función objetivo es

 Suponga que además del cargo por tarjeta de circuitos, ahora el subcontratista incluirá un cargo fijo por montar un lote de tarjetas (el mismo cargo independientemente del numero de tarjetas o de su tipo) ¿que cargo fijo hará que a kiwi le sea indiferente subcontratar o montar todas las tarjetas internamente?

 El cargo fijo que hace que a Kiwi le sea indiferente subcontratar o montar tarjetas internamente es cuando ese monto fijo hace que la utilidad (con subcontratación) sea igual a la utilidad que obtendría si las hiciera internamente.

 Matemáticamente se puede representar con la siguiente ecuación:  Utilidad sin subcontratación = Utilidad con subcontratación + cargo fijo  = ( )* ( ) *1800 +cargo fijo  Cargo fijo =

 Consulte la formulación de programación lineal en la pregunta 8 ¿es degenerada la solución optima? Explíquelo.

 La solución óptima es degenerada ya que las variables que no requieren subcontratación son cero (X1 y X3) lo que significa que le resulta más conveniente a kiwi subcontratar para obtener mayor ganancia.  Este caso se presenta cuando se valora una solución básica no única, la cual se tiene con al menos una variable básica de valor cero en el sistema de m restricciones, alguna de ellas debe ser restricción redundante que contiene sólo un punto vértice del conjunto factible

 Consulte la formulación de programación lineal en la pregunta 8. ¿existen óptimos alternativos? Explíquelo

 Existen 6 óptimos alternativos que podemos observar en el siguiente cuadro. Cada uno con distintos valores para las variables en todas ellas vemos que siempre los valores de las variables x1 y x3 (sin subcontratación) son cero lo que nos indica que es mas provechoso trabajar con subcontratación.

1era SOLUCION 4TA SOLUCION X10 0 X X30 0 X FO DA SOLUCION 5TA SOLUCION X10 0 X X30 0 X41800X41000 FO FO era SOLUCION 6TA SOLUCION X10 0 X2400X22000 X30 0 X41800X41800 FO FO

 Consulte la formulación de programación lineal en la pregunta 8. En la actualidad el subcontratista cobra $110 por cada tarjeta de circuitos para computadora de escritorio montada. Cuanto tendría que disminuir este cargo para que fuera optimo para kiwi hacer que el subcontratista termine los circuitos impresos para computadoras de escritorio? ¿Por qué?

 Actualmente kiwi produce solo 1286 escritorios que le dejan una utilidad de 1286* = dolares  Tenemos entonces que la utilidad por escritorio es /1800 =  Realizando una ecuacion para hallar el costo  Precio – costo = utilidad unitaria  1500-costo =  Costo =

 Dado este escenario si queremos que la utilidad anterior que es 55 dólares suba a el costo debe bajar de 1445 a es decir 12.2 dólares  Por tanto la tarjeta debe tener un costo de dólares

 Consulte la formulación de programación lineal en la pregunta 3. Suponga que kiwi pudiera aumentar su capacidad para montar tarjetas de circuitos de tal manera que se puedan completar 600 tarjetas de circuitos adicionales para computadoras de escritorio o 500 adicionales para portátiles o cualquier combinación equivalente. ¿debe aumentar su capacidad KIWI si el costo fuera de por mes? Conteste sin resolver el programa lineal.

 El costo en un mes por montar de tarjetas de la empresa es de 295 c/u para portátiles y 305 para escritorio.  Tenemos que 500 portátiles * 295 dólares =  Y que 600 escritorio * 305 dólares =  El costo total es dólares  El costo propuesto en la pregunta es por mes entonces el costo baja por lo tanto la empresa debe aumentar su capacidad

 Consulte la formulación de programación lineal en la pregunta 3. suponga que se ha rediseñado la unidad de escritorio para que use menos "Chips”, lo que reduce el costo de los materiales directos en $ 200 ¿le dicen los resultados producidos por su computadora si cambiará el plan optimo de producción? Explíquelo.

PARA ESCRITORIOPORTATILES Materiales directos Mano de obra directa Produccion de cajas externas2015 Montaje de tarjetas10090 Ensamblado final510 gastos indirectos fijos Produccion de cajas externas Llenado de tarjetas Montaje final TOTAL Por tanto utilidad =

 El plan debería continuar por que se obtiene una utilidad mayor que con subcontratista