INECUACIONES DE PRIMER Y SEGUNDO GRADO DÍA 10 * 1º BAD CT @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
INECUACIONES DE PRIMER GRADO SOLUCIONES DE UNA INECUACIÓN Las soluciones de una inecuación son los valores que pueden tomar las incógnitas, tales que al sustituirlos en la inecuación la desigualdad sea cierta. Ejemplos: x > 4 x = 5 es solución; también x = 6, x = 7, etc x2 – 4 < 0 x = 1 es solución; también x = - 1 , x = 0, etc EQUIVALENCIA DE INECUACIONES Dos o más inecuaciones son equivalentes cuando tienen la misma solución. x > 4 y x – 4 > 0 son inecuaciones equivalentes. x2 – 4 < 0 y (x + 2).(x – 2) < 0 son equivalentes. @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Principios de equivalencia Si a los dos miembros de una inecuación se les suma o resta un mismo número o expresión algebraica, resulta una inecuación equivalente a la dada. Si x – 3 > 1 x – 3 + 3 > 1 + 3 x > 4 Si a los dos miembros de una inecuación se les multiplica por un número real positivo, resulta una inecuación equivalente a la dada. Si x / 3 < 5 3. x / 3 < 3. 5 x < 15 Si a los dos miembros de una inecuación se les multiplica por un número negativo, resulta una inecuación equivalente a la dada, pero con el signo de desigualdad contrario al de la inecuación original. Si - x < 3 (- 1).( - x ) > (- 1).3 x > - 3 @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT EJEMPLOS Sean las inecuaciones: 1.- 2 + x ≥ 4 2.- 2x ≤ x -5 3.- x > x + 2 SOLUCIONES: 1.- 2 + x ≥ 4 x ≥ 4 – 2 x ≥ 2 Solución = [ 2, + oo ) 2.- 2x < x -5 2x – x < - 5 x < - 5 Solución = ( - oo, - 5 ) 3.- x > x + 2 x - x > 2 0 > 2 FALSO Solución = Ø (Conjunto vacío) @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT EJEMPLO Sea la inecuación: 2 – x x – 3 4.- -------- – ----------- + 2 > x 5 6 SOLUCIÓN: 6(2 – x) – 5( x – 3 ) 4.- ----------------------------- + 2 > x 30 4.- 12 – 6x – 5x + 15 + 60 > 30x 87 > 41x x < 87/41 Solución = (- oo , 87/41) @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Inecuaciones CUADRÁTICAS Una inecuación de segundo grado o inecuación cuadrática es la que tiene la forma: ax2 + bx + c ≤ 0 , ( o ≥ 0, o > 0, o < 0) Siendo a > 0 siempre. Para resolverlas se hallan las dos raíces, tomada la expresión como una ecuación, x1 y x2 . Luego se factoriza el polinomio característico: (x - x1).( x - x2 ) ≤ 0 ó (x - x1).( x - x2 ) ≥ 0 Y por último se halla el signo de cada factor en cada uno de los siguientes intervalos: (-oo, x1), ( x1 , x2 ) y ( x2, +oo) La solución será un intervalo abierto o cerrado si las raíces halladas, x1 y x2 , pertenecen o no a la solución del sistema. @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT Ejemplo 1 Resuelve la inecuación: x2 - 5x + 6 ≤ 0 Se hallan las dos raíces: x1 = 2 , x2 = 3 Se factoriza el polinomio: (x - 2).( x - 3 ) ≤ 0 Se halla el signo de cada factor: - oo 2 3 +oo ( x – 2 ) - + + - - + ( x – 3 ) Productos + - + En [ 2, 3 ] el producto es NEGATIVO ( < 0 ), luego Solución = x ε [ 2, 3 ] @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT Ejemplo 2 Resuelve la inecuación: x2 + 3x - 10 > 0 Se hallan las dos raíces: x1 = 2 , x2 = - 5 Se factoriza el polinomio: (x - 2).( x + 5 ) > 0 Se halla el signo de cada factor: - oo - 5 2 +oo ( x – 2 ) - - + - + + ( x + 5 ) Productos + - + En (-oo.-5) y en ( 2, +oo) el producto es POSITIVO ( > 0 ), luego Solución = { V x ε R / x ε ( -oo, -5 ) U ( 2, +oo ) } @ Angel Prieto Benito Matemáticas 1º Bachillerato CT
Matemáticas 1º Bachillerato CT Ejemplo 3 Resuelve la inecuación: x2 + 2x + 1 < 0 Se hallan las dos raíces: x1 = -1 , x2 = - 1 Se factoriza el polinomio: (x + 1 ).( x + 1 ) < 0 Se halla el signo de cada factor: - oo - 1 +oo ( x +1 ) - + - + ( x + 1 ) Productos + + No hay ningún intervalo cuyo producto sea NEGATIVO, luego Solución = Ø @ Angel Prieto Benito Matemáticas 1º Bachillerato CT