Repaso Clase 1: “Teoría de la medida”. Propiedades emergentes de la métrica: 1) Continuidad 12345678 … ∞ Los Naturales El PlanoEl Intervalo (I1)El Circulo.

Slides:



Advertisements
Presentaciones similares
Dispersión clásica de partículas cargadas
Advertisements

Proyecto de las leyes de Newton.
Tiro Parabólico Supongamos que se dispara un proyectil, con velocidad inicial v0, desde una altura h, formando un ángulo  con la horizontal. Se pretende.
TEMA 7 CINEMÁTICA Primera Parte.
Dinámica: Estado de los cuerpos que encuentran en movimiento.
Pirueta Hecho por: Ester Rodas.
Estudio de Fuerzas Leyes de Newton
Magnitudes Prof. Méd. Alejnadro Estrada.
I.I. Laura Istabhay Ensástiga Alfaro
Representación en espacio de estado
C 1 CINEMÁTICA Movimiento Mecánico. Bases para su estudio.
ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.
ESPACIOS VECTORIALES.
Leyes del movimiento de Newton
Resumen de la Clase Anterior 1.Dimensionalidad: Numero de variables “independientes” de un espacio 2.Coherencia: Objetivo general de la física como un.
CAMPO GRAVITATORIO I.E.S. Francisco de los Cobos. Úbeda (Jaén)
Supongamos que nos plantean el siguiente problema:
Tema 2: Métodos de ajuste
APLICACIONES DE LA DINÁMICA
Jorge González Contreras Séptimo Año Básico
CAMPO ELECTRICO (
Fisica 1 ByG Primer Cuatrimestre 2007 Clase 2 Isaac (1643) Helmut (1920)
Dinámica de los sistemas de partículas
Cap. 13 Gravitación.
Fuerzas y Leyes de Newton
ACELERACION La aceleración media de una partícula se define como el cambio en velocidad v dividido entre el intervalo Δt durante el cual ocurre dicho.
Cap. 9 Sistemas de Partículas
DINAMICA DE LOS SISTEMAS DE PARTICULAS
¿Puede la física aportar al grado de verdad de esta afirmación?
Cap. 2 – Movimiento en Una Dimension
 .
Control Estadístico de Procesos Introducción a la Probabilidad.
Resumencisimo. Que sucede en el caso en el que las amplitudes no son iguales. w1w2 La representación esepctral. Para dar forma (para mandar información)
Física Lic.Sujey Herrera Ramos
Trabajo y cinética. Entonces: Un truco conocido Trabajo y cinética.
Las Leyes de Newton.
Vibraciones en un medio no viscoso
CONCEPTOS BÁSICOS DE MECÁNICA CUÁNTICA
Leyes de la mecánica clásica.
Leyes del movimiento de Newton
MOVIMIENTO ARMÓNICO SIMPLE
LAS LEYES DEL MOVIMIENTO
Un acercamiento a la mecánica por componentes fundamentales.
Magnetic Fields.
A partir de la ecuación de Newton, se puede inferir una funcion potencial. Consecuencias conceptuales y practicas… Hay una función ADITIVA de la velocidad.
Fisica 1 ByG Primer Cuatrimestre 2007 Clase 1. Revelaciones 1: Pensar en el espacio adecuado Revelaciones 3: El esqueleto de las formas. Revelaciones.
Un poco de lo que vimos hasta ahora
PRINCIPIOS DE LA MECANICA CLASICA
UNA ECUACION PARA LAS LEYES DEL MOVIMIENTO
Respuesta: NO. Versión grafica del mismo argumento.
Midiendo distancias entre respuestas neuronales (del saltamontes) Respuesta de una neurona (del saltamontes) a distintos olores Problema (del saltamontes.
DINAMICA GENERAL DE LA PARTICULA
Fundamentos de Física Moderna Mecánica Cuántica
Tiro Parabólico Supongamos que se dispara un proyectil, con velocidad inicial v0, desde una altura h, formando un ángulo  con la horizontal. Se pretende.
Introducción & estática de partículas
Fisica 1 ByG Primer Cuatrimestre 2007 Clase 2 Isaac (1643) Helmut (1920)
Cap. 7 Energía Cinética y Trabajo
CINEMATICA.
Andrés Camilo Suárez Leaño 17/06/2015
REPASO DE FÍSICA Física 2º Bto 18/04/ /04/2017
Mecánica de los fluidos
Fundamentos de Física Moderna RELATIVIDAD ESPECIAL UN Fabián Andrés Peña Guerrero G2E25 19/06/2015.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA UNEFA.
“Tipos de Fuerzas & leyes de Newton”.
DINÁMICA DE LA PARTÍCULA
FUERZAS.
FUERZAS.
Ing. Juan V. Villamizar Hernández Física 1: Mecánica Núcleo temático 3 DINÁMICA DE LA PARTÍCULA 1 W I L L Y S.
A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA Dpto. de Física y Química
CINEMATICA.
Transcripción de la presentación:

Repaso Clase 1: “Teoría de la medida”

Propiedades emergentes de la métrica: 1) Continuidad … ∞ Los Naturales El PlanoEl Intervalo (I1)El Circulo (S1) 01 x y Dist(3,3) < 0.5Dist(0.5) < 0.05Dist(π) < π/5 dist(5) < 0.5 Un mundo sin vecinos (a distancia arbitrariamente pequeña) Mundos con vecinos arbitrariamente cerca  SE PUEDE HACER ANALISIS (Derivar … Integrar …)

Métricas en Espacios no Euclideos, funciones, imágenes, genes y neuronas En general, dadas dos observaciones, un problema típico con el que uno se encuentra es decir si son iguales, si pertenecen a una misma categoría, si se parecen poco o mucho, si a su vez se asemejan mas que a un tercera observación, cuanto varia a medida que uno la repite muchas veces y si uno manipula el sistema. En fin, uno quiere establecer una DISTANCIA entre distintas observaciones. Algunos ejemplos que veremos son distancias en respuestas de neuronas (trenes de espigas) y entre genes.

Distancia en el Espacio de Funciones Distancia entre una función lineal y una sinusoidal, marcada por el área gris. Una de las distancias mas simples en el espacio de funciones, dada por la suma de la distancia euclidea en cada punto de la función.

Distancia en el Espacio de Funciones Esta es la idea de cuadrados mínimos, y permite ajustar una función a una serie de datos. La función que “mejor” ajusta los datos (de una familia de funciones) es la que resulta más cercana a los datos originales.

Distancia en el Espacio de Funciones Longitud promedio de los segmentos definen la distancia a la curva

Distancia en el Espacio de Funciones Longitud promedio de los segmentos definen la distancia a la curva

P E R T I M Distancia en el Espacio de Imágenes ( Dinámica del trafico de proteínas en la célula) P E R T I M Meyer et al (2005) Medida analoga a la distancia entre funciones, la suma del valor absoluto de la luminosidad de todos los pixels. La importancia de poder cuantificar para establecer modelos correctos. PER y TIM entran juntos al núcleo o por separado?

P E R T I M Distancia en el Espacio de Imágenes ( Dinámica del trafico de proteínas en la célula) P E R T I M Meyer et al (2005) Medida analoga a la distancia entre funciones, la suma del valor absoluto de la luminosidad de todos los pixels. La importancia de poder cuantificar para establecer modelos correctos. PER y TIM entran juntos al núcleo o por separado?

Un problema con la distancia “euclidea” en el espacio de imágenes (y de caras) Una descomposición mas inteligente del espacio de caras: una base de “caras fundamentales” o auto-caras. El problema de una distancia dada por la suma de la diferencia de luminosidad a través de todos los pixels de la imagen es que distintos ángulos de vista, o oclusiones dan imágenes muy distintas correspondientes al mismo objeto.

La dimensionalidad del espacio de caras, cuantos numero necesito dar para decir de quien hablo? Imagen Original Detección de rasgos por comparación a un marco de referencia Descripción de una cara en el espacio de rasgos (mucho mas eficiente que el espacio de pixels)

Un problema parecido: Similitud entre genes AGTAAGCTAGCAGCA…. AGTAAGCGGGCAGCA…. La métrica de comparación punto a punto funciona bien en este ejemplo, estas dos secuencias son parecidas y su distancia es corta. AGTAAGCTAGCAGCA…. XXXAGTAAGCTAGCA …. La métrica de comparación punto a punto NO FUNCIONA BIEN en este ejemplo, Una traslacion hace que punto a punto niguna base coincida y sin embargo los genes se asemejan.

Midiendo distancias entre respuestas neuronales (del saltamontes) Respuesta de una neurona (del saltamontes) a distintos olores Problema (del saltamontes y del investigador): Como reconstruir el olor a partir de la respuesta? En este caso, el conteo de espigas no alcanza… Una metrica que tiene en cuenta la distancia alcanza para separar cualquier para de olores (tomando la distancia al centro de cada distribucion) Una manipulacion farmacologica (Picotoxina) que perturba el orden temporal sin modificar la respuesta total (baraja en el tiempo) hace que la respuesta a los olores sea inclasifcable. Macleod, Backer, Laurent (1998)

Una buena métrica en el espacio de respuestas neuronales Definir la distancia entre dos secuencias como el numero de operaciones, inserciones, deleciones, traslaciones, necesarias para pasar de una secuencia a la otra. J Victor (2005)

Métrica en el espacio de terremotos (y sus ecos) Una pregunta importante en sismología es: Dado un gran terremoto, cual es la secuencia temporal de terremotos (ecos, rebotes) que le siguen? LOS DATOS SOLUCION, LA SECUENCIA QUE MINIMIZA LA DISTANCIA A TODAS LAS OBSERVACIONES Schoenberg and Tranbarger.

FIN DE LA RUTA (y resumen) 1.Funciones y Cardinalidad: El numero de elementos, una primera relación establecida por una función entre dos conjuntos. 2.Funciones y Dimensionalidad: Aspectos generales de funciones del tiempo en el espacio (R -> R2) y del espacio en un escalar (por ejemplo la temperatura) 3.Formas canónicas del movimiento: Oscilaciones, exponenciales y puntos fijos. La fauna de soluciones ordenadas, estacionarias y no divergentes. 4.Espacios métricos: Como asignar una medida a una variedad de espacios relevantes. Cuantificar la similitud o diferencia de medidas experimentales en una funcion de distancia. Neuronas, genes, imágenes, caras y terremotos.

Repaso Clase 2: “Fundamentos de la mecanica”

HISTORIA DE LA INVARIANZA Un sistema de referencia en el que son válidas las leyes de la física clásica es aquel en el cual todo cuerpo permanece en un estado de movimiento rectilíneo y uniforme en ausencia de fuerzas. Aristoteles (III AC): El estado natural de las cosas es la ausencia de movimiento. Luego, en ausencia de fuerzas, estas pierden su “impetu” y se detienen. La fuerza es por lo tanto necesaria para mantener los objetos en movimiento. Buridan (XIV) “el del burro”: Proponia que un objeto no pierde espontaneamente su impetu sino que esto es la consecuencia de fuerzas que se le oponen (resistencia del aire, gravedad…) Galileo (XVI) Un objeto continua en la misma dirección y a velocidad constante salvo que sea perturbado. Es imposible determinar la diferencia entre un objeto estacionario y uno en movimiento sin una referencia externa. PRIMERA LEY

Primera ley a partir de la Ecuación de Newton Una ecuación diferencial. El significado de este “igual” es que las dos funciones coinciden. Los operadores que actúan sobre las incógnitas no son solo aritméticos sino que incluyen derivadas e integrales. La ecuación es vectorial.

Dos aspectos importantes de la Segunda Ley La masa es un parámetro físico que caracteriza a un objeto. En particular, de la ecuación de Newton se asume implícitamente que: LA MASA NO DEPENDE DE LA VELOCIDAD. Esta es una igualdad vectorial que corresponde en realidad a tantas ecuaciones como dimensiones hayan (en general 3)

Agnosticismo de las Fuerzas Gravedad Elástica Eléctrica Rozamiento F=F ELECTRICA + F ROZAMIENTO + F GRAVEDAD + F ELASTICA La fuerza resultante es la suma de fuerzas de distintos tipos. Uno de los enunciados implícitos en la ecuación de Newton es que estas fuerzas pueden tratarse, a los efectos del movimiento, como un solo objeto. Fuerza Resultante

Tercer principio: Acción y reaccion F1F2 Y por lo tanto: Es decir: F1 = -F2 o dicho de otra manera, F1+ F2 = 0: y De la ley de Newton: Se tiene que:

Dinámica de (conjunto) de dos cuerpos con fuerzas extensas F1F2 Extensión de la segunda ley de Newton (p cambia con F ext )

Repaso Clase 2: “Introduciendo la gravedad”

Introduciendo la gravedad M1M2 r Siempre el mismo signo (atractiva)... salvo rarezas... Proporcional a las dos masas. Proporcional a la inversa del cuadrado de la distancia.

La gravedad entre masas y tamaños muy distintos M1 m2 r R La gravedad es distinta a distintas alturas? Si, lo es, porque se puede hablar de un valor de g y no de una función g(h)? Estimando la diferencia

El experimento (moderno) de Galileo El experimento de Galileo mejorado: Dejar caer objetos en una cámara de vació y fotografiarlos con una cámara suficientemente rápida.

El experimento (mental) de Galileo El experimento de Galileo de los cuerpos que caen: Misma “demostracion” para un ojbeto de masa (3m). Generalizar esto para masas arbitrarias.

Clase 3:Gravedad, integrales y primeras reglas de conservación.

Gravedad (literalis) caída libre y conservación de la energía: Evidencia Empírica

Dos conceptos importantes. ¿Puede la física aportar al grado de verdad de esta afirmación?

Funciones del movimiento, velocidad, tiempo y espacio. Podemos resolver las ecuaciones del movimiento: 0

Funciones del movimiento, velocidad, tiempo y espacio. Una fuerza un tanto exótica, proporcional a al masa y aproximadamente constante cerca de la superficie de la tierra. Podemos resolver las ecuaciones del movimiento: 0 La masa no aparece en la ecuacion de movimiento. Una rareza de la gravedad (y potencialmente de cualquier fuerza proporcional a la masa).

Funciones del movimiento, velocidad, tiempo y espacio. Una fuerza un tanto exótica, proporcional a al masa y aproximadamente constante cerca de la superficie de la tierra. Podemos resolver las ecuaciones del movimiento: 0 Con esto hemos determinado x(t) y v(t) pero pude interesarnos otras relaciones como por ejemplo v(x)

Funciones del movimiento, velocidad, tiempo y espacio. Una fuerza un tanto exótica, proporcional a al masa y aproximadamente constante cerca de la superficie de la tierra. Podemos resolver las ecuaciones del movimiento: 0 Con esto hemos determinado x(t) y v(t) pero pude interesarnos otras relaciones como por ejemplo v(x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 1: Resolver el sistema de ecuaciones ya integrado. 0 h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 1: Resolver el sistema de ecuaciones ya integrado. 0 h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 1: Resolver el sistema de ecuaciones ya integrado. 0 Con esto hemos determinado x(v) y a partir de esa relación encontramos que hay una cantidad que se conserva. h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 2: Resolver directamente las ecuaciones para v(x) o x(v). ¿Como? 0 Podemos resolver directamente las ecuaciones de movimiento sobre una variable que no sea el tiempo. h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 2: Resolver directamente las ecuaciones para v(x) o x(v). ¿Como? 0 Podemos resolver directamente las ecuaciones de movimiento sobre una variable que no sea el tiempo. h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 2: Resolver directamente las ecuaciones para v(x) o x(v). ¿Como? 0 Podemos resolver directamente las ecuaciones de movimiento sobre una variable que no sea el tiempo. h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 2: Resolver directamente las ecuaciones para v(x) o x(v). ¿Como? 0 h=(H-x)

Funciones del movimiento, velocidad, tiempo y espacio. Posibilidad 2: Resolver directamente las ecuaciones para v(x) o x(v). ¿Como? 0 Podemos resolver directamente las ecuaciones de movimiento sobre una variable que no sea el tiempo. h=(H-x)

Fundamentos de fisica aplicada. 0

0 Si H es un 7 piso (22 metros):

Fundamentos de fisica aplicada. 0 Si H es un 7 piso (22 metros): Si H es un 1 piso (3 metros): Pipino Cuevas en el primer piso, de donde, parece, pudo producirse la caída.

Conservación. Integrando funciones desconocidas: Saber algo cuando no se puede saber todo.

Conservación. Integrando funciones desconocidas: Saber algo cuando no se puede saber todo. Consideremos el caso, mas simple, en que la fuerza es solo una función de la posición, como es el caso para dos fuerzas que nos interesan: la gravedad y la elástica (y, veremos, modulo una constante también la eléctrica)