La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

Presentaciones similares


Presentación del tema: "ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO."— Transcripción de la presentación:

1 ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.
1.- PERSPECTIVA HISTÓRICA

2 Los átomos y/o moléculas estables por la interacción electromagnética.
Desde la perspectiva electromagnética macroscópica, los átomos a su vez se componen de partículas más pequeñas, a las que puede asignárseles, al menos,dos propiedades que son la masa (m) y la carga eléctrica (q).

3 Existen dos tipos de carga llamadas positiva
y negativa de modo que en condiciones normales los cuerpos presentan un estado neutro de carga, es decir el Nº de cargas positivas es igual al Nº de cargas negativas. Si un átomo o molécula ha perdido o ganado electrones, entonces no está compensado en carga y tenemos un ión que puede ser positivo o negativo. La carga eléctrica está cuantizada, es decir sólo se puede dar en múltiplos de la carga del electrón . En la interacción entre sistemas la carga eléctrica se conserva, lo que quiere decir que no se crea ni se destruye por frotamiento u otras causas, sino que simplemente se transfiere entre los sistemas. Entre sistemas no compensados en carga existe una fuerza entre ellos, que es atractiva si las cargas de los sistemas son de distinto signo y repulsiva si las cargas son del mismo signo.

4 Ley de Coulomb Charles Coulomb (1736 – 1806) determinó la fuerza de interacción eléctrica entre car-gas puntuales y que ha sido corroborada experimentalmen-te a lo largo del tiempo desde su nacimiento. Esta ley funda-mental dice “La fuerza de interacción eléc-trica entre dos cargas puntua-les es directamente proporcio-nal al valor de las cargas, in-versamente proporcional al cuadrado de la distancia entre dichas cargas estando dirigida según la línea que une dichas cargas”

5 Si la cargas están situadas en y
, entonces la fuerza sobre la carga q2 viene dada por De la mecánica conocemos las unidades de fuerza y distancia, pero desconocemos la unidad de carga y el valor de la constante de proporcionalidad k. Se presentan dos opciones Fijar k arbitrariamente y deducir experimentalmente la unidad de carga. Fijar arbitrariamente la unidad de carga y medir experimentalmente k.

6 Unidades (S.I.) que fija como unidad de carga el CULOMBIO (C)
Esta segunda opción es la elegida por el Sistema Internacional de Unidades (S.I.) que fija como unidad de carga el CULOMBIO (C) definida como la carga que deberían tener dos cargas puntuales para que situadas en el vacío a 1 m de distancia se repeliesen con una fuerza de A partir de esta definición se mide experimentalmente k y se ob- serva que no es una constante universal sino que depende del medio donde estén situadas las cargas. Así, los medios desde el punto de vista eléctrico se caracterizan por medio de una magnitud llamada “CONSTANTE DIELÉCTRICA o PERMITIVIDAD del MEDIO ()” y se expresa el valor de la constante k como .

7 Para el vacío En la expresión anterior F indica Faradios (la unidad de capacidad en el S.I.) y la fuerza es:

8 PRINCIPIO DE SUPERPOSICIÓN
Vamos a retocar la ley de Coulomb para generalizar resultados. La posición de la carga que ejerce la acción, q1 la vamos a denotar con variables con prima y la posición de la que sufre los efectos con variables sin prima , así la fuerza es

9 La interacción entre 2 cargas puntuales es insuficiente para la
descripción de situaciones reales (más de dos cargas, distribu-ciones de carga no puntuales), por lo que para su generalización se recurre al principio de superposición (ha sido ampliamente confirmado por la experiencia) que se enuncia como sigue: “La fuerza neta sobre una carga puntual de prueba debida a un conjunto de cargas es la suma vectorial de las fuerzas que cada una de ellas ejerce individualmente sobre la carga de prueba”.

10 DISTRIBUCIONES DE CARGA
Las cargas puntuales (distribuciones discretas) son una de las formas en que la carga eléctrica puede encontrarse, pero en otras ocasiones la carga aparece en forma compacta dando lugar a lo que denominamos distribuciones continuas de carga. Así tenemos las siguientes distribuciones de carga: Distribuciones DISCRETAS de cargas puntuales Distribuciones CONTINUAS de carga

11 B.1) Distribuciones VOLÚMICAS de carga. La carga eléctrica total Q
se distribuye en un volumen definido V, de modo que podemos asignar a cada volumen elemental , del volumen inicial, situado en respec- to de una referencia, una carga eléctrica elemental , . Definimos la magnitud puntual (magnitud en cada punto) llamada “Densidad volúmica de carga ()” mediante un proceso de paso al límite como

12 B.2.- Distribuciones SUPERFICIALES de carga. Es una aproximación
de la anterior cuando una dimensión es infinitamente más pequeña que las otras dos. En estas la carga eléctrica total Q se distribuye en una superficie dada S, de modo que podemos asignar a cada superficie ele- mental , de la superficie de partida, situada en respecto de una refe- rencia, una carga eléctrica elemental , . Definimos la magnitud puntual (magnitud en cada punto) llamada “Densidad superficial de carga ( )” mediante un proceso de paso al límite como

13 Definimos la magnitud puntual (magnitud en cada punto) llamada
B.3.- Distribuciones LINEALES de carga. Es una aproximación de la primera cuando dos dimensiones son infinitamente más pequeñas que una de ellas. En estas la carga eléctrica total Q se distribuye en una línea (curva) dada , de modo que podemos asignar a cada trozo de curva elemental , de la línea de partida, situado en respecto de una referencia, una carga eléctrica elemental . Definimos la magnitud puntual (magnitud en cada punto) llamada “Densidad lineal de carga ( )” mediante un proceso de paso al límite como , . Si las densidades de carga son iguales en todos los puntos de una distribución entonces son funciones que no dependen de la posición y se dice que son distribuciones de carga uniformes.

14 FUERZA NETA SOBRE CARGA DE PRUEBA DEBIDA A DISTRIBUCIONES DE CARGA
La fuerza total sobre una carga de prueba, q, debida a un conjunto de distribuciones se puede escribir como: Si en lugar de una carga de prueba puntual tenemos una distribución de prueba aplicamos el principio de superposición para determinar la fuerza total sobre la distribución de prueba.

15 INTENSIDAD DE CAMPO ELÉCTRICO ( )
El campo eléctrico en un punto cualquiera del espacio , debido a distribuciones de carga, se define como la fuerza ejercida por unidad de carga . En consecuencia dividiendo por q en la expresión anterior tendremos la intensidad del campo eléctrico, en función de las fuentes de campo (cargas eléctricas)

16 POTENCIAL ELECTROSTÁTICO
POTENCIAL ELECTROSTÁTICO. ENERGÍA ELECTROSTÁTICA ASOCIADA A UNA PARTÍCULA CARGADA. En lo sucesivo, cuando tengamos que usar expresiones del campo eléctrico en general utilizaremos su forma integral en función de las fuentes de campo (las cargas eléctricas) Si tenemos un campo eléctrico, debido a distribuciones de carga, en una región del espacio y en un punto dado por colocamos una carga puntual q entonces sobre dicha carga aparece una fuerza

17 Campo electrostático es conservativo
¿Es conservativo el campo electrostático? ¿Qué signo elegir? Con idéntico razonamiento que el usado para el campo gravitatorio, el signo que describe la situación física es -

18 Expresión del potencial eléctrico
La unidad del potencial eléctrico, en el S. I. es la de Julio/Culombio [J/C] que recibe el nombre de Voltio [V] De la relación Se ha hecho uso de las diferentes variables utilizadas en la derivación e integración Y en consecuencia

19 Expresión general del potencial. Energía eléctrica
Si tenemos distribuciones discretas y continuas El campo eléctrico y el potencial debidos a una carga discreta son La energía asociada a una partícula por estar situada en un punto a potencial es


Descargar ppt "ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO."

Presentaciones similares


Anuncios Google