Professor: Verónica Pantoja . Lic. MSP.

Slides:



Advertisements
Presentaciones similares
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
Advertisements

Conducta Eléctrica de la Membrana
EXCITACIÓN Y CONTRACCIÓN MUSCULARES
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
Fisiología del ejercicio
MIOFIBRILLAS Y FUNCION CONTRACTIL Espinoza Flores Erandy Lorena
Dr. José Roberto Martínez Abarca
SISTEMA CARDIOVASCULAR. Dr. José Roberto Martínez abarca
Vías Eferentes.
Dr. René Cevo Salinas Anestesiólogo
Dr. René Cevo Salinas Anestesiólogo.-
Generalidades Desde una perspectiva simple, el músculo liso, con una diferente organización, potenciales de acción erráticos, marcapasos móviles, contracciones.
Tema 1.5: Contracción Muscular.
Músculo cardiaco El corazón como bomba
1. Introducción. 2. Músculo esquelético Características.
Professor: Verónica Pantoja . Lic. MSP.
El Sarcolema o membrana muscular
Técnico en masoterapia”
Músculo Liso Fisiología I Biomedicina Ricardo Antonio Corro Hernández.
Contracción Muscular    Elaboró: Araceli Serna Gutiérrez.
Sistema muscular.
SISTEMA MUSCULAR. ANGIE KATERINE RODRIGUEZ MARIA FERNANDA ZARAMA
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
Universidad del Valle de Mexico
TEJIDO MUSCULAR LUIS FERNANDO RODRIGUEZ CAMPOS Grupo L.
IMPULSO NERVIOSO Y SINAPSIS
Sistema muscular núcleo de ingeniería biomédica
Contracción muscular y ventilación pulmonar
Dra.Verónica Enriquez Fisiología ICB
coordinación de órganos y tejidos
FISIOLOGIA I CONTRACCION MUSCULAR TEMA NUMERO 11
Tejido Muscular.
LAS NEURONAS.
Tipos de receptores Los receptores son estructuras que corresponde a terminaciones nerviosas libres o encapsuladas, que actúan como transductores, es decir,
UNION NEUROMUSCULAR.
EFECTORES.
Contracción Muscular.
SISTEMA MOTOR Tipos de músculo Liso: visceral, involuntario
Tejido Muscular.
Los Músculos.
Conducción del impulso nervioso
Tejido muscular Caracterizado por células de gran longitud, cuyo carácter más específico es la presencia de miofibrillas contráctiles que permiten los.
Tejido muscular 12/04/ :01.
CONTRACCIÓN MUSCULAR MARÍA ANGÉLICA RIEDEL.
Fisiología Muscular Parte II.
Los efectores y Contracción Muscular
Introducción a las Patologías Musculoesquelestales THER 2030 DIFUNSION FISICA II Profa: Karina Santiago Rodriguez.
CONTRACCION MUSCULAR Y MECANICA DE LA RESPIRACIÓN Profesor: Jorge Cárdenas S.
M.C. Ricardo Castañeda Salazar
Histología del Sistema Muscular
CONTRACCIÓN MUSCULAR ¿CÓMO SE REALIZA ? MARÍA ANGÉLICA RIEDEL.
CURSO FISIOLOGIA HUMANA
Tejido muscular 2 15/04/ :59.
Tejido muscular Función Producción de movimientos corporales
FISIOLOGÍA GENERAL TEMA 2. Diferenciación celular. Organización funcional del cuerpo humano. TEMA 3. Medio interno. Homeostasis. Mecanismos y sistemas.
Tejido Muscular.
Sinapsis.
Cátedra de Anatomía y Fisiología Humana Dra Susana Jerez
BIOMECÁNICA DEL MÚSCULO ESQUELÉTICO
EXCITACIÓN DEL MÚSCULO ESQUELÉTICO: A- TRANSMISIÓN NEUROMUSCULAR B-ACOPLAMIENTO EXCITACIÓN-CONTRACCIÓN.
Sistema muscular.
Neurona: Potencial de Membrana y de Acción
¿Qué es necesario para llevar a cabo las siguientes actividades?
Estructura microscópica del músculo
Fisiología del ejercicio II
Professor: Verónica Pantoja . Lic. MSP.
Mecánica de la contracción
DRA JUDITH IZQUIERDO MEDICINA INTERNA.  Ultraestructura cardiaca  ¾ partes del miocardio esta formada por miocitos, 17-24µm de diàm. Y µm de longitud.
Professor: Verónica Pantoja . Lic. MSP.
Transcripción de la presentación:

Professor: Verónica Pantoja . Lic. MSP. Fisiología muscular Professor: Verónica Pantoja . Lic. MSP. “Kinesiologia” Reconocer las características de los tipos de tejido muscular. Descripción de los mecanismo de excitación y contracción del musculo esquelético.

Generalidades El tejido muscular, al igual que el tejido nervioso, corresponde a un tipo particular de tejido……….Tejido Excitable.- ESQUELETICO LISO CARDIACO

Actina  Miosina Es una familia de proteínas globulares que forman los microfilamentos, uno de los tres componentes fundamentales del citoesqueleto de las células de los organismos eucariotas (también denominados eucariontes). Puede encontrarse como monómero en forma libre, denominada actina G, o como parte de polímeros lineales denominados microfilamentos o actina F, que son esenciales para funciones celulares tan importantes como la movilidad y la contracción de la célula durante la división celular Es una proteína fibrosa, cuyos filamentos tienen una longitud de 1,5 µm y un diámetro de 15 nm, y está implicada en la contracción muscular, por interacción con la actina. La miosina es la proteína más abundante del músculo esquelético. Representa entre el 60% y 70% de las proteínas totales y es el mayor constituyente de los filamentos gruesos.

Conceptos Generales El músculo no es una masa amorfa, muy por el contrario posee una estructura característica y que es determinante en la forma que ejerce su función. En un adulto de 70 Kilos, aproximadamente 28 kg, Corresponden a masa muscular. En esta misma condición, de los 42 litros de agua corporal, 22 de ellos constituyen parte de la estructura muscular. El tejido muscular contiene alrededor del 80% del K+ intracelular del organismo (el plasma tiene solo un 5% del K+ corporal)……….Ej.- si tan solo un 0,5% del K+ intramuscular pasara al plasma generaría una concentración plasmática de potasio incompatible con la vida.

Conceptos Generales Si una contracción muscular se realiza movilizando un peso o palanca con la misma fuerza durante toda la contracción, diremos que esta contracción es Isotónica ( F > Carga). Si una contracción muscular se realiza con una fuerza y/o tensión creciente, pero no podemos generar movimiento de un peso o de una palanca, diremos que esta contracción es Isométrica (F < Carga). En el ser humano, es decir, en fisiología humana es muy difícil generar una contracción ISOTÓNICA PURA !!!

Músculo Esquelético Masa altamente estructurada. Todo ME está rodeado por una cubierta fibrosa llamada epimisio. Del epimisio surgen tabiques llamados perimisio, los que dividen al músculo en fascículos. Cada fascículo a su vez, está formado por un número de fibras musculares. Las fibras o células musculares, son largas y cilíndricas, poseen varios núcleos y su membrana cellar recibe el nombre de sarcolema.

Músculo Esquelético En el interior de las células musculares encontramos el sarcoplasma. En el interior del sarcoplasma están las miofibrillas, las que a su vez contienen a los miofilamentos. Los miofilamentos son de 2 tipos : - Gruesos, o de miosina. - Delgados, o de actina * Los músculos se insertan finalmente en tejido óseo a través de Tendones, los cuales son estructuras fibrosas y elásticas, pero no excitables.

Tendones

Músculo Esquelético Unidad Motora : Es el conjunto de una motoneurona y todas las células musculares que inerva. Las fibras nerviosas que activan la contracción muscular, son mielínicas…….sin embargo, pierden su vaina dando múltiples y finas ramas amielínicas en las proximidades de la célula que inerva. Estas ramas amielínicas entran en contacto con el sarcolema a través de una estructura especializada llamada placa terminal o placa neuromotora. Para realizar un movimiento fino de precisión, se requiere de una motoneurona que inerve solo unas pocas fibras musculares. En el humano no existe inervación cruzada, es decir, una fibra muscular no recibe inervación de 2 motoneuronas diferentes.

Placa Terminal

Funcionamiento Músculo Esquelético Se genera un potencial de acción que desencadena la transmisión de un impulso nervioso a través de una motoneurona (30 – 100 metros/segundo). Este impulso nervioso alcanza la placa motora neuromuscular………se libera acetilcolina (neurotransmisor) la cual alcanza los receptores específicos en el lado muscular de la placa ; en esta etapa se produce un retardo fisiológico (retardo sináptico) en la conducción del impulso nervioso, del orden de los 0,5 milisegundos. El estímulo de los receptores de acetilcolina genera un nuevo potencial de acción (PA) en el músculo el que provoca la contracción de dicho músculo. Si no existe otro PA, a la contracción le sigue una fase de relajación. A esta secuencia de un estimulo y una contracción la llamamos CONTRACCIÓN O SACUDIDA SIMPLE !!!

Unión Neuromuscular Cuando consideramos condiciones exclusivamente fisiológicas, la contracción del músculo se produce únicamente debido a un impulso nervioso !!! Este impulso o PA llega al sector presináptico de la unión neuromuscular. La unión neuromuscular es una Sinapsis Colinérgica. Recibe el nombre de placa motora terminal o placa motora a secas. Es una sinapsis exclusivamente excitatoria, es decir, solo genera potenciales excitatorios postsinápticos (PEPS)

Unión Neuromuscular

El Sarcolema o membrana muscular Se encuentra formado por la membrana celular típica y una lámina basal externa formada por glucoproteínas. Presenta una serie de invaginaciones, denominados túbulos T, que se prolongan hasta situarse en estrecha relación con el retículo endoplasma tico Geneser F. Histología, 3ra edición, editorial panamericana, México D.F, México. Año 2000 pp. 305-321

El Sarcoplasma Difiere de otras células por la presencia en él de una proteína con capacidad de fijar el oxígeno transportado por la sangre (mioglobina) y que confiere a la fibra su característica coloración roja. La fibra muscular, además, tiene capacidad de almacenar hidratos de carbono en forma de glucógeno

El sarcómero Unidad Funcional Músculo Esquelético Características Estriadas Origen contracción muscular Formado por proteínas contráctiles: ACTINA (filamentos delgados) MIOSINA (filamentos gruesos) 1: Sarcomero 2: Bandas I-Actina 3: Banda A-Miosina 4: Disco Z 5: Filamento delgado 6: Filamento Grueso

El mecanismo contráctil depende de 4 proteínas: Actina (filamentos delgados), Miosina (filamentos gruesos), troponina y tropomiosina (reguladoras)

La contracción muscular Claves: CALCIO ATP Suma de sarcómeros=contracción

Y de donde obtiene energía el musculo para la contracción? 1-Nombre los mecanismos de obtención de energía para la contracción. 2-Que es la fosfocreatina y que importancia tiene para el musculo. 3.-Cuales es la principal fuente de energía del musculo. Porque

Musculo liso Professor: Verónica Pantoja . Lic. MSP. “Kinesiologia”

Musculo liso Forma paredes de los órganos Involuntario Potencial de membrana de -50mV Se contrae bajo diferentes estímulos sin inervación

Morfología No presenta estrías No tiene lineas Z Pocas mitocóndrias No presenta troponina Presenta tropomiosina GANONG, Willian F., Fisiología Humana 20ª edición

Contracción Calmodulina, no troponina C Ca+2 procedente del LEC. Mecanismo puente de aldama o cerrojo para los puentes. Contracción sostenida con poco gasto de energía. Relajación disosiación del complejo Ca+2-calmodulina. GUYTON, Arturh C., Fisiología Médica 11ª edición

Relajación Disminución de la [Ca2+] Intracelular Na+ Ca2+ Na+ Ca2+ IP3R Ca2+ RyR Ca2+ Ca2+ SERCA PMCA Ca2+ SR Citosol Disminución de la [Ca2+] Intracelular

IPCHILE - DOCENTE: Veronica Pantoja S. 2012 Musculo cardiaco Professor: Verónica Pantoja . Lic. MSP. “Kinesiologia” IPCHILE - DOCENTE: Veronica Pantoja S. 2012

Las células musculares cardíacas constituyen   el 75% del volumen total del corazón, siendo los componentes principales de los miocitos las miofibrillas y en un menor porcentaje las mitocondrias. El resto de los componentes son:  el sistema T, el retículo sarcoplásmico, el núcleo, el sarcoplasma,  el sarcolema y los lisosomas.

sarcolema    Es la membrana celular de la fibra muscular. Ella se invagina en  el interior celular para tomar más contacto con las miofibrillas, formando una red de paredes gruesas que recibe el nombre de túbulos T.  En sectores del túbulo T muy dilatados que toman estrecha relación con el retículo endoplásmatico penetra el potencial de acción  que provocará la liberación de  calcio necesaria para la contracción muscular.

El miocardio es un tejido excitable y presenta 4 propiedades fundamentales: Excitabilidad : La excitabilidad es una propiedad común de las neuronas y la células musculares. Es la capacidad de las células de transmitir un potencial de acción. Automatísmo: El corazón genera los impulsos que producen su contracción. El automatismo es una propiedad intrínseca del corazón modulada por factores extrínsecos como la inervación vegetativa, hormonas, iones, temperatura. Conducción de impulsos : Los impulsos generados por el nodo sinoatrial son conducidos por medio del Sistema de conducción eléctrica del corazón. El dromotropismo indica la capacidad del miocardio para conducir estos impulsos. Contractilidad: La contractilidad del miocardio indica el grado de fuerza que este puede ejercer para vencer la resistencia vascular.

Guyton & Hall, Fisiología Médica Fibras de miocardio Músculo cardiaco: Es estriado Las fibras se dividen y se conectan Tienen filamentos de actina y de miosina Discos intercalares: Membranas celulares que separan entre sí a las células Funciona como un sincitio Resistencia eléctrica: 1/400 de la membrana celular Discos intercalares Guyton & Hall, Fisiología Médica

Guyton & Hall, Fisiología Médica Fibras de miocardio Las membranas celulares se funden entre sí: uniones comunicantes o de paso. Los iones se mueven sin dificultad de una célula a otra a través de los discos intercalados Cuando una fibra se excita, el potencial viaja por todas las demás: SINCITIO. Auricular y Ventricular Guyton & Hall, Fisiología Médica

Potenciales de acción del músculo cardiaco Potencial de membrana en reposo: -85 a -90 mV -90 a -100 mV en las fibras de Purkinje Después de la espiga la membrana permanece despolarizada durante: 0.2 se en las aurículas o 0.3 en los ventrículos (meseta) Repolarización abrupta La contracción dura 3 a 5 veces más que en el músculo esquelético Guyton & Hall, Fisiología Médica

Potenciales de acción del músculo cardiaco En el m. esquelético la contracción inicia con la apertura brusca de los canales rápidos del sodio, por una diezmilésima de segundo y se cierran abruptamente. En el m. cardiaco inicia con la apertura de los canales de sodio y también de calcio. Los de calcio permanecen abiertos décimas de segundo permitiendo el paso al interior de la célula de ambos iones (meseta). Guyton & Hall, Fisiología Médica

Acoplamiento excitación-contracción De la membrana el potencial se propaga hacia el interior de la fibra mediante los túbulos T que activan al retículo sarcoplásmico Salen grandes cantidades de calcio hacia el sarcoplasma, catalizan las reacciones químicas que deslizan los filamentos de actina y miosina: contracción muscular Guyton & Hall, Fisiología Médica

Duración de la contracción Se inicia la contracción unos milisegundos después de que inicia el potencial de acción y sigue hasta unos milisegundos después de que termina el potencial Músculo auricular: 0.2 seg Músculo ventricular: 0.3 seg Guyton & Hall, Fisiología Médica