Primer Parcial -> Tema 1 Minería de Datos Universidad del Cauca.

Slides:



Advertisements
Presentaciones similares
DOC ID © Chevron 2005 Personal Monitors Make Sure Yours Protects You.
Advertisements

2003 HYPACK MAX Training Seminar1 Sample_Cartographic_Subset_Sort_55 55 – generando los Subconjuntos Cartográficos en SELECCION Empezando el programa de.
Algoritmos de Minería Los métodos básicos.
EDSI Universidad del Cauca 2011
Inteligencia Artificial Búsqueda informada y exploración
Using Localised “Gossip” to Structure Distributed Learning Bruce Edmonds Centre for Policy Modelling Manchester Metropolitan University.
Triangles. How many triangles can you count in this picture? Are they the same? NOTA: Para cambiar las imágenes de esta diapositiva, seleccione una imagen.
KIND OF FRACTIONS. PROPER FRACTIONS Mixed Fractions or Improper Fractions.
¿Qué hora es? What time is it?. ¿Qué hora es? It’s 1:00 Es la una (notice we do not say uno for time but una) 1:00 is the ONLY time where we say “Es la…”
HS/HL Removal1 FUNDAMENTOS DE ELIMINACIÓN DE SUPERFICIES OCULTAS Graficación FCC.
En los grupos… Lean las preguntas, tomen un poco de tiempo para practicar, escuchen a la gramática de todo el grupo y ayuden a los miembros cambiar errores.
Análisis de Algoritmos
Masculino/Femenina Singular/Plural. Choose who is X and who is O 1.Take turns, follow along with the slides. 2.If you are correct, you get to mark your.
COMPUTACION 2009 Clase 6 Clase 7.
1. If a word ends in a vowel, n, or s, the stress is on the next-to-last syllable. Ej: pan-ta- lo -nes 2. If a word ends in any other letter, the stress.
Técnicas Supervisadas Aproximación no paramétrica
La Hora... Telling Time in Spanish. ¿Que hora es? The verb ser is used to express the time of day. Use es when referring to "one o'clock" and use son.
¿Qué hora es? To ask what time is it in Spanish, we say… ¿Qué hora es?
Telling Time in Spanish Señora Geitgey. To ask what time it is, you say: ¿Qué hora es?
Objective Distinguish the rules to form the plural of a noun.
4.1 Continuidad en un punto 4.2 Tipos de discontinuidades 4.3 Continuidad en intervalos.
#2A REFLEXIVE VERBS – a verb in which the person does the action for/to himself. These verbs use “se” at the end of the infinitive. Ex: lavarse los dientes.
To tell the time in Spanish… 3:15=Son las tres y quince. 11:20=Son las once y veinte. 6:04=Son las seis y cuatro. 1:30=Es la una y treinta 8:19=Son las.
Negative Expressions. Vocabulary  Nunca= Never  Nada= Nothing  Nadie= Nobody  Ninguno(a)= None/Not a one  Tampoco= Neither.
Aprendizaje en Árboles de Decisión
Present Tense of -ar Verbs P. 84 Realidades 1 VERBS n A verb usually names the action in a sentence. n We call the verb that ends in -r the INFINITIVE.
UNDER THE MEXICAN LAW Illegal immigration is a crime, punishable by up to two years in prison. The immigrants who are deported and return to México.
Presentation Created by Dr. Luis O. Jiménez Design & Validation of Classifiers Machine Learning Design & Validation of Classifiers.
Español II Negative Expressions. In English a sentence with 2 negative words is incorrect. – Ex. “I don’t know nothing.” is incorrect – Ex. “I don’t know.
SABES QUE – LUNES EL 13 DE OCTUBRE 2014 Escribe una pregunta (the question) y una respuesta (the answer). You will ask & answer these questions with a.
Me llamo ___________ Clase 701 La fecha es el 26 de enero del 2015 Proposito # 46: ¿Juegan ustedes al tenis? Actividad Inicial: Copia y completa con la.
+ VAMONOS ***ask a neighbor if you need any help Grab a PASAPORTE and fill out with: NOMBRE (name… first and last) PERIOD Fecha (date… write out completely)
Palabras Afirmativas y negativas
Las Preguntas (the questions) Tengo una pregunta… Sí, Juan habla mucho con el profesor en clase. No, Juan no habla mucho en clase. s vo s vo Forming.
Proposito 71 b04/30/15 Copy & complete with the ‘Personal A’ if necessary or write X if not necessary. 1.Mira _____ un programa. 2.Busca ____ informacion.
DO NOW: Solve each math problem
Time Telling time is rather easy. You only need to know the numbers up to 59 to be able to tell the time.
Tipos de errores Área Académica: Ingeniería industrial
FYI –for your information Complete packets for the next two days. Follow instructions on the board. Do not write on packet! Retry set up again on.
El presente indicativo ESPAÑOL 1. A. What is the present tense? It is when the action of a verb occurs at the moment. Verbs can be divided into two categories:
Los números Apuntes de vocabulario. treinta treinta y uno.
Telling Time in Spanish. To ask what time is it, you say: ¿Qué hora es? ¿Qué hora es?
El Verbo “GUSTAR” En español gustar means “to be pleasing” In English, the equivalent is “to like”
Properties of Matter Mass/ Masa Volume/ Volumen Density/ Densidad.
Las Horas del Día hora hora o’clock §The word hora means time in asking the time of the day. In standing time the word hora is understood. There is not.
Telling Time in Spanish. To ask what time is it, you say: ¿Qué hora es? ¿Qué hora es?
La hora. A. The verb ser is used to tell time 1. With the exception of es for 1o’clock, the plural son is used. ejemplo: ¿Qué hora es? -Es la una/ Son.
LOS VERBOS REFLEXIVOS. WRITE: What is a reflexive verb? A reflexive verb describes when a person doing an action is also receiving the action.
Me llamo ___________ Clase 702 La fecha es el 26 de enero del 2015 Proposito # 46: ¿Juegan ustedes al tenis? Actividad Inicial: Copia y completa con la.
Telling Time in Spanish Por: Sra. Dickerson. To ask what time is it, you say: ¿Qué hora es? ¿Qué hora es?
Double Object Pronouns A review..... Objects receive action in a sentence. Action is received by an object directly or indirectly. Objects can be replaced.
Forming Questions ¡Aprenda! Forming Questions By Patricia Carl October 2013.
Present Tense of -ar Verbs. Regular Verb Regular Verb: follows a pattern for conjugation. Pattern: Stem + endings.
Present Tense of -er & -ir Verbs. Regular Verb Regular Verb: follows a pattern for conjugation. Pattern: Stem + endings.
AQA Unit 2 Speaking Los medios La televisión La publicidad Las tecnologías de la comunicación La cultura de todos los días El cine La música La moda La.
Las clases de Sra. Schwarz Realidades 1
IR – to go.
El subjuntivo en cláusulas adverbiales
To ask what time it is in Spanish we say ______________
Expressing likes and dislikes.
Warm-up Fill in the blank with the correct form of the verb “ser” for each subject (p. 35): 1. Yo _______________ de Savannah. 2. Mis amigas ________.
ESTAR= to be.
Día número 139—español 1 El 30 de marzo
Hoy vamos a..... escuchar y entender un rap en español
Quasimodo: Prepárate para la prueba.
Quasimodo: Traducir Our mother is hardworking.
Día número 26—español 1 ACT 2: Times after the 30 min mark
Práctica para el examen oral 2.1
Día número 29—español 1 Make corrections on the Table of Contents
CONSEQUENCES OF ACCIDENTS AT WORK GLORIANA RUIZ. CONSEQUENCE OF WORKING WITHOUT GLOVES 1. A person can have side effects if he sprays a plant with chemicals.
Transcripción de la presentación:

Primer Parcial -> Tema 1 Minería de Datos Universidad del Cauca

 Existen muchos métodos para tratar con el problema de la Selección de Instancias (SI).  El más conocido es un algoritmo greedy denominado Condensed Nearest Neighbor Rule (CNN).  CNN construye un subconjunto S del conjunto de entrenamiento T tal que todo ejemplo de T está más cerca a un ejemplo de S de la misma clase que a otro de S de clase distinta.

 El algoritmo comienza seleccionando una instancia de cada clase de T y las inserta en S.  Después, cada instancia de T se clasifica con 1-NN usando solamente las instancias que haya en S.  Si una instancia no se clasifica bien, se añade a S, asegurando que se va a clasificar correctamente.  Este proceso se repite hasta que no haya instancias en T que se clasifiquen incorrectamente.

 Ejemplo: Diseño de un Clasificador para Iris  Problema simple muy conocido: clasificación de lirios.  Tres clases de lirios: setosa, versicolor y virginica.  Cuatro atributos: longitud y anchura de pétalo y sépalo, respectivamente.  150 ejemplos, 50 de cada clase.  Disponible en: Setosa Versicolor virginica

 Ejemplos de conjuntos seleccionados sobre Iris:  Reducción: 0%. Reducción: 97,78%. Acierto Test: 95,33 % Acierto Test: 93,33%

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full Produces consistent set

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full

 Condensed Nearest Neighbour (CNN) Hart 1968  Incremental  Order dependent  Neither minimal nor decision boundary consistent  O(n 3 ) for brute-force method  Can follow up with reduced NN [Gates72] Remove a sample if doing so does not cause any incorrect classifications 1.Initialize subset with a single training example 2.Classify all remaining samples using the subset, and transfer any incorrectly classified samples to the subset 3.Return to 2 until no transfers occurred or the subset is full