12 Sistemas de medidas. Proporcionalidad

Slides:



Advertisements
Presentaciones similares
MATEMÁTICAS II MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Advertisements

SON FRACCIONES EQUIVALENTES
FRACCIONES Víctor Hugo Valencia Parisaca –
Magnitud Magnitud es todo aquello que puede ser medido o cuantificado.
ECUACIONES LINEALES.
Coordenadas en el plano
2. Descomposición de un número decimal
Números Racionales Materia Matemáticas Tema 1 Curso Nivel II.
Problemas y cálculos rápidos
Divisibilidad en los números naturales
Lic. Helga Kelly Quiroz Chavil
El Tipo de Cambio.
INFORME DE MATEMATICAS:
Tema 5.
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE GUAYAMA PROF
Módulo N°2 Plan de Nivelación Razones, proporciones y porcentajes.
1.- Si a un número se le restan 2/3 de su quinta parte, quedan 26.
Teoría matemática.
LAS RELACIONES MATEMÁTICAS
Proporcionalidad numérica
Problemas aritméticos
UNIDAD 3 Progresiones.
PLANTEO DE ECUACIONES 3° SEC.
Tema 6 La demanda del mercado.
MINIMO COMÚN MÚLTIPLO DE DOS NÚMEROS a y b
Números enteros.
Tanto por ciento o porcentajes
MATEMÁTICA FINANCIERA
Apuntes de Matemáticas 3º ESO
Matemática básica para Comunicadores
Concepto de Porcentaje
Universidad Metropolitana Título V Campus Orden de Operaciones
Prueba de aptitudes y competencias básicas
PROPORCIONALIDAD Y PORCENTAJES
MagnitudesRazones Proporción Cuarta proporcional Prop. inversasProp. compuestasProp. directas Los tantos por ciento Proporciones Problemas Problemas y.
PORCENTAJES Bloque I * Tema 034.
Conocer y manejar los conceptos de razón y proporción Reconocer las magnitudes directa o inversamente proporcionales Construir sus correspondientes.
PROPORCIONALIDAD 2º ESO
Razón y proporción numérica
Proporcionalidad 1. Magnitudes y medida 2. Razón y proporción
Del lenguaje ordinario al lenguaje algebraico
Tema 7 PROPORCIONALIDAD.
Unidad 3: PROPORCIONALIDAD.
Potencias y Raíces de números naturales
Problemas y cálculos rápidos
TEMA 3 PLANTEAMIENTO DE SISTEMAS DE ECUACIONES
Tema 6: Proporcionalidad
Razón y proporción numérica
PROPORCIONALIDAD 2º ESO
PORCENTAJES DÍA 06 * 1º BAD CS
Segundo Bimestre Proyectos:
Apuntes de Matemáticas 3º ESO
DE LA MULTIPLICACION A LA PROPORCIONALIDAD
PROPORCIONALIDAD..
Proporcionalidad Numérica
Regla de tres simples.
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA. FACULTAD DE HUMANIDADES COORDINACIÓN PEDAGOGÍA. Integrantes: Allende Ricoy Aracely Leyva Montoya Abigail Quiroz.
Recopiló: César Johnson Cruz
RAZÓN : Es la comparación por cociente de dos números donde el primero se llama antecedente y el segundo consecuente. 2 5 antecedente 2 : 5 dos es a.
Nivelación de Matemática
Unidad III PROPORCIONES Nivelación de Matemática.
PORCENTAJES Y APLICACIONES
Unidades decimales 7 U Unidad: U
Actividades de Proporcionalidad PÁRATE - PIENSA Y… PRACTICA.
Tema 8 - Proporcionalidad
Razón y proporción numérica
MAGNITUDES DIRECTAMENTE PROPORCIONALES Si dos magnitudes son tales que a doble, triple... cantidad de la primera corresponde doble, triple... cantidad.
Razón y proporción numérica
Porcentajes 4 Tanto por ciento o porcentajes Tanto por ciento o porcentajes 4 Cálculo de porcentajes Cálculo de porcentajes 4 Porcentajes, fracciones.
Porcentajes 4 Tanto por ciento o porcentajes Tanto por ciento o porcentajes 4 Cálculo de porcentajes Cálculo de porcentajes 4 Porcentajes, fracciones.
Transcripción de la presentación:

12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 13 Razón y proporción numérica La razón entre los números 10 y 2 es 5, su cociente: La razón entre 0,15 y 0,3 es Razón entre dos números a y b es el cociente Los números 2, 5 y 8, 20 forman una proporción, pues sus razones son iguales. Es decir: Los números a, b y c, d forman una proporción si la razón entre a y b es la misma que entre c y d. Es decir: Se lee “a es a b como c es a d” A a y d se les llama extremos. ad = bc A b y c se les llama medios. El producto de los extremos es igual al producto de los medios.

Sistemas de medidas. Proporcionalidad 12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 14 Magnitudes directamente proporcionales Ejemplo: Un saco de patatas pesa 20 kilogramos. ¿Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. ¿Cuántos sacos se podrán hacer? Observa: Sacos: 1 saco 2 sacos 3 sacos ? sacos ? Fíjate: Kilos: 20 kg 40 kg 60 kg 520 kg ? ? Habrás advertido que: Las magnitudes número de sacos y peso en kilogramos son directamente proporcionales. La constante de proporcionalidad para pasar de sacos a kilogramos es 20. En general, si dos magnitudes son tales que a doble, triple… cantidad de la primera corresponde doble, triple… de la segunda, entonces se dice que esas magnitudes son directamente proporcionales.

12 Sistemas de medidas. Proporcionalidad Ejercicio Dólares: Euros: Matemáticas 1º ESO 15 Magnitudes directamente proporcionales: ejercicio Ejercicio Si un dólar vale 0,95 euros, ¿cuánto costarán 6 dólares? ¿Cuántos dólares podremos comprar con 20 euros? Las magnitudes dólares y euros son directamente proporcionales, luego: En definitiva: Dólares: 1 2 3 Euros: 0,95 2 · 0,95 = 1,9 3 · 0,95 = 2,85 (dólares) · 0,95 = euros. Por tanto, 6 dólares cuestan 6 · 0,95 = 5,7 euros Para pasar de dólares a euros se multiplica por 0,95. Para pasar de euros a dólares se divide por 0,95 Por lo mismo, 20 euros = 0,95 · (x dólares), luego x = 20 : 0,95 = 21,05 20 euros = 21,05 dólares Recuerda: El producto de los extremos es igual al producto de los medios.

Sistemas de medidas. Proporcionalidad 12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 16 Regla de tres simple directa Ejemplo. En 50 litros de agua de mar hay 1300 g de sal. ¿Cuántos litros de agua de mar contendrán 5200 g de sal? La cantidad de agua y la cantidad de sal son directamente proporcionales. La proporción establecida es: Si representamos por x el número de litros que contendrán 5200 g de sal, se verifica la proporción: 50 · 5200 = 1300 x Disposición práctica En 50 litros hay 1300 g de sal 50 l 1300 g En x litros habrá 5200 g de sal x l 5200 g Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple directa.

Sistemas de medidas. Proporcionalidad 12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 17 Aplicación de la regla de tres a los problemas de porcentaje (I) Ejemplo 1. En las rebajas de enero el descuento de una tienda es del 20% sobre el precio indicado. Un señor compra un juego de toallas etiquetado con 90 euros. ¿Cuánto tiene que pagar? Un descuento del 20% quiere decir que de cada 100 euros pagamos 80. Aplicando la regla de tres, se tiene: Si de 100 euros pagamos 80 100 80 De 90 euros pagaremos x 90 x Tendrá que pagar 72 euros por el juego de toallas. En la práctica Un descuento del 20% equivale a multiplicar por 0,20. La cantidad resultante es lo rebajado. Rebaja: 90 · 0,20 = 18. Se paga: 90 – 18 = 72 euros Directamente. Si descuentan el 20%, se pagará el 80%. Se pagarán 90 · 0,80 = 72 euros

Sistemas de medidas. Proporcionalidad 12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 18 Aplicación de la regla de tres a los problemas de porcentaje (II) Ejemplo 2. Una señorita compra un coche cuyo precio de fábrica es de 8200 euros. A este precio hay que añadirle un16% de IVA (impuesto sobre el valor añadido). ¿Cuál será el precio final del coche? Si el impuesto es del 16%, quiere decir que por cada 100 euros debemos pagar 116. Aplicando la regla de tres simple se tiene: Si por 100 euros pagamos 116 100 116 Por 8200 euros pagaremos x 8200 x Por tanto, tendrá que pagar 9512 euros por el coche. En la práctica Un incremento del 16% equivale a multiplicar por 0,16. La cantidad resultante es el incremento total. Incremento: 8200 · 0,16 = 1312. Se paga: 8200 + 1312 = 9512 euros Directamente. Si se incrementa el 16%, se pagará el 116%. Se pagarán 8200 · 1,16 = 9512 euros

12 Sistemas de medidas. Proporcionalidad 1 euro = 166,386 pesetas Matemáticas 1º ESO 19 Proporcionalidad y cambio de moneda 1 euro = 166,386 pesetas ¿A cuántas pesetas equivaldrán dos euros? Para pasar de euros a pesetas se multiplica por 166,386 ¿Cuántos euros serán 2000 pesetas? Son aplicaciones de la regla de tres simple. 1 euro 166,386 pesetas x = 2 · 166,386 = 332,77 pesetas 2 euros x pesetas Redondeando: 333 pesetas 166,386 pesetas 1 euro 2000 pesetas x euros Para pasar de pesetas a euros se divide por 166,386

Sistemas de medidas. Proporcionalidad 12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 20 Magnitudes inversamente proporcionales Ejemplo: Si 3 hombres necesitan 24 días para hacer un trabajo, ¿cuántos días emplearán 18 hombres para realizar el mismo trabajo? Observa: Doble de 3 Triple de 3 Hombres: 3 6 9 18 Fíjate: 3 · 24 = 72 6 · 12 = 72 9 · 8 = 72 18 · 24 = 72 ? Días: 24 12 8 ? Mitad de 24 Un tercio de 24 Si dos magnitudes son tales que a doble, triple… cantidad de la primera corresponde la mitad, la tercera parte… de la segunda, entonces se dice que esas magnitudes son inversamente proporcionales. Pero aún no hemos contestado la pregunta inicial: ¿cuántos días emplearán 18 hombres? Si 18 · = 72, entonces = 72 : 18 = 4 días ?

Sistemas de medidas. Proporcionalidad 12 Sistemas de medidas. Proporcionalidad Matemáticas 1º ESO 21 Regla de tres simple inversa Ejemplo. Un ganadero tiene pienso suficiente para alimentar 220 vacas durante 45 días. ¿Cuántos días podrá alimentar con la misma cantidad de pienso a 450 vacas? Fíjate en que, con el mismo pienso, si el número de vacas se duplica, tendrá para la mitad de días; y si las vacas se triplican, para un tercio de los días, etc. Por tanto, las magnitudes número de vacas y número de días son inversamente proporcionales. Vacas: 220 450 220 · 45 = 450 · x x = 22 Días: 45 x Disposición práctica 220 vacas tienen para 45 días 220 vacas 45 días 450 vacas tendrán para x días 450 vacas x días Esta forma de plantear y resolver problemas sobre magnitudes inversamente proporcionales se conoce con el nombre de regla de tres simple inversa.