INDICE ENZIMAS: Naturaleza Química- Propiedades Generales- Nomenclatura y Clasificacion- Coenzimas y Grupos Prostéticos. Actividad Enzimática: Unidad de.

Slides:



Advertisements
Presentaciones similares
ENZIMAS: PROTEINAS TRIDIMENSIONALES
Advertisements

BIOQUÍMICA Enzimología.
CICLO DEL ACIDO CITRICO
Las reacciones bioquímicas de la célula
Biocatalizadores o enzimas
INTRODUCCIÓN AL METABOLISMO. ATP Y ENZIMAS
Actividad enzimática
Funciones de las Proteínas
CICLO DEL ACIDO CITRICO
Cual de las siguientes vitaminas necesita la presencia de bilis a nivel intestinal para poder absorberse: VITAMINA K b) NIACINA.
EQUIPO DOCENTE Prof. Responsable: Dra. Irma Gladis Rezza de Acosta
Introducción: Nomenclatura y clasificación.
Introducción: Nomenclatura y clasificación.
ENZIMAS.
METABOLISMO.
Dra. Judith García de Rodas Salón 207
ENZIMAS CATALIZADORES BIOLÓGICOS QUE:
1 KM 1 1 Vo= Vmax [S] + Vmax Y = m x + b = m = b.
CINÉTICA ENZIMÁTICA.
¿Cómo modifican la cinética de las reacciones?
ENZIMAS Catalizadores Biológicos.
ENZIMAS 1.
ENERGÍA y METABOLISMO Unidad 3
Fosforilación a nivel de sustrato Fosforilación oxidativa
Enzimas.
TEMA 10: REGULACIÓN DE LA ACTIVIDAD ENZIMÁTICA
MORFOFISIOLOGÍA HUMANA I.
Bolilla 2: PROGRAMA ANALITICO Y/O DE EXAMEN
QUIMCA BIOLOGICA- EQUIPO DOCENTE
EQUIPO DOCENTE Prof. Responsable: Dra. Ana Anzulovich
ENZIMAS.
Tema 7 ENZIMAS.
Prof. Lorena Bruna Ing. en Alimentos
Las enzimas.
ENZIMAS.
ENERGÍA y METABOLISMO Unidad 3
BOLILLA 1 METABOLISMO. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo. ENZIMAS: Naturaleza Química. Propiedades Generales.
Instituto Tecnológico de Tuxtla Gutiérrez
UNIDAD 6. METABOLISMO 6.1. Visión general del Metabolismo Celular.
ENZIMAS Bioquimica, CHEM 4220 Universidad Interamericana de PR Recinto de Bayamón J. Roberto Ramirez Vivoni, Ph.D. Alberto L. Vivoni Alonso, Ph.D. abril.
LIC. NUTRICIÓN QUÍMICA BIOLÓGICA 2014.
EL CONTROL DE LAS ACTIVIDADES CELULARES
UNIDADES METABOLISMO.
ENZIMAS Los catalizadores biológicos son macromoléculas llamadas enzimas La mayoría de las enzimas son proteínas, con la excepción de un pequeño grupo.
VIAS METABÓLICAS. ENZIMAS
ENZIMAS.
ENZIMAS.
Cátedra de Bioquímica-UNNE 2015
Dpto de Bioquímica, Biología Molecular y Farmacología
ENZIMAS Son biomoléculas cuya función es aumentar la velocidad de las reacciones bioquímicas, actúan por lo tanto como catalizadores biológicos.
Enzimas: Una clase especial de proteínas
CONTROL DE LA ACTIVIDAD CELULAR
Ciclo del Ácido Cítrico
TEMA 5. BIOCATALIZADORES: ENZIMAS
Universidad de Carabobo Facultad de Ciencias de la Salud Escuela de Medicina“Dr. Witremundo Torrealba" Departamento de Fisiología y Bioquímica Integrantes:
BIOENERGÉTICA: METABOLISMO Y ENZIMAS
ENZIMAS 1. En una reacción catalizada por un enzima:  una reacción catalizada por un enzima: La sustancia sobre la que actúa el enzima se llama sustrato.
Energía, Enzimas, y Metabolismo
ENZIMAS.
LIC. NUTRICIÓN QUÍMICA BIOLÓGICA 2014.
Conjunto de reacciones químicas que se llevan a cabo en la célula
Enzimas Fotosíntesis y sus efectos Digestión Respiración celular
LIC. NUTRICIÓN QUÍMICA BIOLÓGICA 2015.
TEMA 5. BIOCATALIZADORES: ENZIMAS
RESULTADO DE APRENDIZAJE: Explicar las reacciones
ENZIMAS.
BOLILLA 1 ENZIMAS: Naturaleza Química- Propiedades Generales- Nomenclatura y Clasificacion- Coenzimas y Grupos Prostéticos. Actividad Enzimática: Unidad.
Bolilla 3 Enzimas Caracteres generales. Importancia del estudio de las enzimas en los alimentos. Nomenclatura y clasificación. Coenzimas. Compartimentalización.
 METABOLISMO. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo. ENZIMAS: Naturaleza Química. Propiedades Generales. Nomenclatura.
Glicólisis Ciclo de Krebbs. Ciclo del ácido tricarboxílico (Ciclo de Krebs) (Ciclo del ácido cítrico)
Transcripción de la presentación:

INDICE ENZIMAS: Naturaleza Química- Propiedades Generales- Nomenclatura y Clasificacion- Coenzimas y Grupos Prostéticos. Actividad Enzimática: Unidad de enzima- Actividad específica- Actividad molecular. Complejo ES- Ecuación de Michaelis Menten Significado e importancia de Km Inhibición competitiva y no Competitiva. Factores que afectan la actividad enzimatica: [Enzima]- pH – T- [S] Regulación Enzimática: Enzimas alostéricas (propiedades y cinética)- Zimógenos- Modulación Covalente Isoenzimas: Propiedades e importancia.

ENZIMAS Transformación de nutrientes simples en moléculas complejas y viceversa Extracción de energía desde combustibles por oxidación Polimerización de subunidades para formar macromoléculas, etc

CARACTERISTICAS DE LAS ENZIMAS PROTEINAS y RNA (Ribozimas): Estructura terciaria y cuaternaria SITIO DE UNION AL SUSTRATO: Uniones no Covalentes (puente de hidrógeno, hidrofóbicas, electrostáticas NECESITAN DE FACTORES ENZIMATICOS: Inorgánicos (metales) y orgánicos (Coenzimas) ESPECIFICIDAD DE SUSTRATO: Estereoespecificidad y especificidad geométrica SON REGULABLES: La síntesis de la proteína, su actividad y degradación.

DISTRIBUCION DE LAS ENZIMAS COMPARTIMENTALIZACION: Diferentes localización dentro de la célula. SISTEMAS MULTIENZIMATICOS: Enzimas relacionadas agrupadas formando verdaderos complejos ENZIMAS MULTIFUNCIONALES: Una enzima que presenta distintos sitios catalíticos

Tipos de reacciones catalizadas por enzimas Oxido-reducción Rotura y formación de enlaces C-C Reorganizaciones internas Transferencia de grupos Reacciones de condensación

Cómo se clasifican las enzimas??? Clase - subclase - subsubclase - nº de orden Lactato 1 1 1 27 deshidrogenasa 1-OXIDORREDUCTASAS Alcohol deshidrogenasa (EC 1.1.1.1) 2. TRANSFERASAS Hexoquinasa (EC 2.7.1.2)

3. HIDROLASAS 4. LIASAS 5. ISOMERASAS 6. LIGASAS Carboxipeptidasa A (EC 3.4.17.1) 4. LIASAS Piruvato descarboxilasa (EC 4.1.1.1) 5. ISOMERASAS Fumarasa ó malato isomerasa (EC 5.2.1.1) 6. LIGASAS Piruvato carboxilasa (EC 6.4.1.1)

Ejemplos de Enzimas que requieren iones metálicos como cofactores Fe++ ó Fe+++ Citocromo oxidasa Catalasa Peroxidasa Zn++ Anhidrasa carbónica Hexoquinasa Glucosa-6-fosfatasa Piruvato quinasa Mg++ K+ Piruvato quinasa

ACTIVIDAD ENZIMATICA Unidades Internacionales Cantidad de enzima que cataliza la transformación de 1 umol de S por minuto Actividad Específica Actividad enzimática por cada miligramo de proteína presente en la muestra Actividad Molecular Moléculas de S convertibles en P por unidad de tiempo y por molécula de enzima

¿Cómo funcionan las enzimas? Modelo llave-cerradura Sitio activo Modelo inducido Sitio activo Estado de transición (ES)

Ejemplo: REACCION CATALIZADA POR LA HEXOQUINASA D-Glucosa

Factores que afectan la actividad enzimática Concentración de Sustrato Concentración de Enzima pH Temperatura

Km se considera una medida de la afinidad de la enzima por el sustrato EFECTO DE LA CONCENTRACION DE SUSTRATO SOBRE LA VELOCIDAD INICIAL: Ecuación de Michaelis - Menten Vo [S] Km se considera una medida de la afinidad de la enzima por el sustrato

Efecto de la concentración de enzima sobre la actividad Concentración saturante de sustrato, pH y temp. constantes

Influencia del pH sobre la actividad enzimática

Ejemplos de enzimas con diferentes pH óptimo

Influencia de la Temperatura sobre la actividad enzimática actividad por de la temperatura T(ºC) Actividad enzimática T. óptima de temperatura provoca desnaturalización

ISOENZIMAS Diferentes formas moleculares de una misma enzima. Son sintetizadas por genes diferentes Tienen diferente composición aminoacídica por lo que pueden separarse por electroforesis. Catalizan la misma reacción, actuando sobre el mismo sustrato para dar el mismo producto

Dos isoenzimas presentan en general diferentes valores de Km y Vmáx. Se encuentran ubicadas en diferentes compartimentos de la célula ó en diferentes tejidos. Son utilizadas en clínica para determinar el origen del tejido dañado

Ejemplo de isoenzima: Glucoquinasa y hexoquinasa Actividad enzimática Km. hexq Km. glucq [glucosa mmol/l

EJEMPLOS DE ISOENZIMAS Regulación de la hexoquinasa y glucoquinasa La Hexoquinasa y la Glucoquinasa son izoenzimas, es decir enzimas diferentes que catalizan reacciones de fosforilación, pero poseen diferentes pesos moleculares, diferenTes velocidades de reacción, diferentes Km.  a) Semejanzas: Ambas enzimas son quinasas, es decir fosforilan; mediante este proceso se aseguran que la glucosa no salga al espacio extracelular. Ambas son enzimas ubicadas en el citosol. Utilizan el catión Mg++ como cofactor. Ambas realizan reacciones endergónicas e irreversibles. 

b) Diferencias: Glucoquinasa Es específica para la D-Glucosa Baja afinidad, por lo tanto alta Km=10 mM Localizada en el hígado y páncreas

Hexoquinasa Fosforila D-Glucosa, D-Manosa y D-Fructosa Alta afinidad, por lo tanto baja Km=0,1 mM Localizada en todos los tejidos

a) La regulación de la hexoquinasa depende de las concentraciones relativas de glucosa y glucosa 6 P, ya que al haber mayor cantidad de glucosa en sangre, la actividad de esta enzima se incrementa, por lo que la velocidad de la glucólisis aumenta proporcionalmente Sin embargo al disminuir los niveles de glucosa y al aumentar los niveles de glucosa 6P, la actividad disminuye debido a la escasez de sustrato y al aumento de producto. Éste último es un modulador alostérico negativo de la hexoquinasa.

b) La regulación de la glucoquinasa está dada de manera indirecta por las concentraciones de glucosa y glucosa 6P. Al haber mayores concentraciones de glucosa 6P, su transformación en fructosa 6P se favorece. Este producto induce el transporte de glucoquinasa al núcleo, en donde se encuentra su proteína reguladora, la cual se encarga de inactivarla bajo estas condiciones. Cuando los niveles de glucosa aumentan en la sangre, el GLUT 2 desencadena una cascada rápida en la cual la proteína se desacopla a la glucoquinasa de su proteína reguladora; por lo tanto, puede ser nuevamente llevada al citosol, donde realiza su actividad quinasa.

Energía de activación de una Reacción catalizada y una reacción no catalizada

INHIBICION ENZIMATICA COMPETITIVA NO COMPETITIVA ACOMPETITIVA INHIBICION REVERSIBLE POR ENLACE COVALENTE (Análogos del estado de transición) INHIBIDOR SUICIDA DIFP Quimotripsina INHIBICION IRREVERSIBLE Penicilina Transpeptidasa Alopurinol Xantina oxidasa

INHIBICION REVERSIBLE INHIBICION COMPETITIVA E E + S ES E + P I EI I + S La eficacia depende de las Km de ambos

Ejemplo de Inhibidor competitivo Succinato + FADH2 Fumarato + FAD+ Succinato deshidrogenasa COO- (CH2)2 COO- CH2 Succinato Malonato

v Km Km ap [S] Gráfica de M-M

INHIBICION NO COMPETITIVA S E + S ES E + P + I EI + I ESI I E S I + S

Km [S] v Gráfica de M-M

INHIBICION ACOMPETITIVA E + S ES E + P + I ESI E S E S I

Características de los diferentes tipos de inhibición reversible Tipo de El Inhibidor Efecto Efecto inhibición se une a s/Vmáx s/Km Competitiva E Ninguno Aumenta No competitiva E y ES Disminuye Ninguno Acompetitiva ES Disminuye Disminuye

INHIBICION ENZIMATICA COMPETITIVA NO COMPETITIVA ACOMPETITIVA INHIBICION REVERSIBLE POR ENLACE COVALENTE INHIBIDOR SUICIDA INHIBICION IRREVERSIBLE

INHIBICION IRREVERSIBLE . Por unión covalente del inhibidor - Acetilcolinesterasa - Quimotripsina Enzima inactivada Diisopropilfluorfosfato (DFP)

INHIBICION IRREVERSIBLE Inhibidor suicida Se une al sitio activo de la enzima y ésta cataliza la modificación del inhibidor a otro compuesto que permanece unido a la enzima. El ALOPURINOL es un inhibidor suicida que actúa sobre la enzima xantina oxidasa (degradación de purinas). Se forma el oxopurinol el cual queda unido a la enzima.

REGULACION DE LAS REACCIONES CATALIZADAS POR ENZIMAS REGULACION DE LA ACTIVIDAD DE LAS ENZIMAS ENZIMAS ALOSTERICAS REGULACION POR PROTEINAS REGULACION POR PROTEOLISIS REGULACION COVALENTE ENZIMAS INDUCIBLES REGULACION DE LA SINTESIS DE LAS ENZIMAS

MODULADORES POSITIVOS MODULADORES NEGATIVOS ENZIMAS ALOSTERICAS Enzima 1 2 3 4 Enzima 1 ENZIMA ALOSTERICA MODULADORES POSITIVOS MODULADORES NEGATIVOS

PROPIEDADES DE LAS ENZIMAS ALOSTERICAS Poseen un sitio de unión a un metabolito regulador (sitio alostérico) La unión del metabolito a la enzima es de carácter reversible y no covalente. En general poseen dos o mas sitios reguladores. La mayoría posee dos o mas cadenas polipeptídicas o subunidades.

EJEMPLOS DE ENZIMAS ALOSTERICAS Hexoquinasa, Fosfofructoquinasa y Piruvato Quinasa Vía glicolítica AcetilCoA carboxilasa Biosíntesis de lípidos Aspartato Transcarbamilasa Biosíntesis de nucleó tidos pirimidínicos Glutamato Deshidrogenasa Degradación de aminoácidos Citrato sintasa, isocitrato y a-cetoglutarato deshidrogenasas Ciclo de Krebs

REGULACION POR MODIFICACION COVALENTE Enzima Enzima Enzima Enzima Fosforilacion ADP-Ribosilación Enzima Enzima Fosfoadenilacion

REGULACION POR PROTEOLISIS Por eliminación de una cadena peptídica, enzimas inactivas se convierten en enzimas activas y viceversa. Las enzimas digestivas: pepsinógeno y quimotripsinógeno se convierten en las enzimas activas pepsina y tripsina. Suele ocurrir una activación secuencial produciéndose una cascada de activaciones. Ej. Coagulación sanguínea. ZIMOGENOS

REGULACION POR PROTEINAS Modifican la actividad de enzimas involucradas en el metabolismo celular. Por ej. Indirectamente activando o inhibiendo la actividad de la glutamina sintetasa. RNA polimerasa: Asn, Gln, Glu, Lys y Arg forman enlaces hidrógenos con las bases del DNA