FUSION NUCLEAR.

Slides:



Advertisements
Presentaciones similares
Cristina Martín Zamora 1ºI
Advertisements

LA ENERGIA NUCLEAR La energía nuclear o atómica es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Hay dos métodos principales.
Núcleo Atómico El núcleo atómico se origina en el big bang, la gran explosión logró que los protones y neutrones se pudieran unir. Se forma por protones.
FUSIÓN NUCLEAR.
FUSION NUCLEAR.
Energía nuclear de fusión
Fusión Nuclear Daniel Vicente Quintana 1º I.
Fusión nuclear Daniel Stanus 1º I.
CRISTIAN NIETO BUENDIA. Es el proceso por el cual varios núcleos atómicos de carga similar se unen para formar un núcleo más pesado. Se acompaña de la.
FUSIÓN NUCLEAR Universidad Católica Andrés Bello
Fusión nuclear.
Energía Nuclear de Fisión
Los núcleos. Energía nuclear
CENTRALES ELÉCTRICAS.
Tema 3 LA ENERGÍA NUCLEAR
Fusión y fisión nuclear
LA ENERGÍA NUCLEAR DEL FUTURO
Uso y aprovechamiento de fuentes renovables en la generación de energía. Modulo IV: “Energía Solar” Ing. Roberto Saravia Esp. EERR y EE
ENERGÍA NUCLEAR Prof. TUANAMA ALBARRÁN, José Jesús.
FUSION Y FISION.
Cuales son las fuentes de energía
QUÍMICA NUCLEAR Fenómenos Nucleares.
ENERGÍA NUCLEAR DE FUSIÓN
FUENTE DE ENERGIA RENOVABLE Y NO RENOVABLE.
Fuentes de energia Energía nuclear Energía cinética Energía potencial
NM4 Química Fenómenos nucleares y sus aplicaciones
Energía nuclear Universidad de Santiago de Chile
Teobaldo Sáez Cerro Profesor
Energía Nuclear.
Nacho González Ángel Morcillo
Una reacción nuclear de fusión consiste en la unión de dos átomos para formar otro más pesado. Se produce energía como consecuencia de la diferencia de.
Energía nuclear:definición
PAGINA 1-PORTADA. PAGINA 2- INDICE. PAGINA 3-HISTORIA. PAGINA 4-RESIDUOS. PAGINA 5-RIESGOS RADIOLÓGICOS. PAGINA 6—SEGURIDAD.
La Energía Nuclear.
Ciencias para el Mundo Contemporaneo Turbina: Máquina destinada a transformar en movimiento giratorio de una rueda de paletas la fuerza viva o la presión.
Por : Guillermo Sánchez.
CLASES DE ENERGIA ENERGIAS RENOVABLES FUENTES DE ENERGIAS RENOVABLES
LA ENERGÍA.
Usos, ventajas y desventajas
Energía Nuclear..
ENERGIAS NO RENOVABLES
ALGUNOS EJEMPLOS DE IMPACTOS PRODUCIDOS POR EL USO DE LAS ENERGÍAS
Diana Bejarano Rodríguez Sara Martínez Villar 4º B
Realizado por : Manuela Nuñez J.
Fusión Nuclear.
Tema 2: Energía nuclear.
CENTRALES NUCLEARES María Pérez 3ºB.
* Su combustible : uranio *Se puede obtener mediante Fisión Nuclear (división de Núcleos atómicos pesados) que se obtiene en laboratorios, o bien por.
Impactos ambientales de la energía nuclear
TIPOS DE ENERGIA QUIMICA 1.
CENTRALES TÉRMICAS Úrsula Serrano Sánchez nº24 Teresa Leyva Conde nº16
Energías renovables El inicio del futuro Adriana Paola Moreno Salgado.
ENERGIA NUCLEAR.
Energía nuclear introducción. Energía Fisión nuclear
RENOVABLES EN POTENCIA
CAPÍTULO 22 Química Nuclear
Energías no renovables
Víctor Romero Díaz Alejandro Castillo Sáiz
TEMA 8: LA ENERGÍA.
ENERGIA NUCLEAR..
" La energía nuclear, otra manifestación de la energía"
Espinosa Villegas Ana Luisa grupo: 504 Capacidad que tiene la materia de producir trabajo en forma de movimiento, luz, calor, etc. Definición.
TEMA 2. ENERGÍAS NO RENOVABLES
Tema 3. Física nuclear Resumen.
Energía.
¿ QUE ES ? SE BASA EN LA ENERGIA QUE SE LIBERA DE LA UNION ENTRE EL TRITIO Y EL DEUTERIO.
ENERGIA NUCLEAR Por: Armatta Micaela; Espinoza Agustina, Ficoseco María y Gaspar Agustina.
CHERNOBYL Por: Alex Pérez Alonso Kevin Suárez Aboy.
ENERGÍA García Ortega Aurea Rigel 557. ENERGÍA POTENCIAL La energía potencial es una energía que resulta de la posición o configuración del objeto. Un.
Nefer Giovanni Garcia Gomez Universidad Nacional de Colombia – Sede Bogotá.
Transcripción de la presentación:

FUSION NUCLEAR

Definición Es el proceso por el cual varios núcleos atómicos de carga similar se unen para formar un núcleo más pesado. Se acompaña de la liberación o absorción de una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático. La fusión nuclear se produce de forma natural en las estrellas. La fusión artificial también se ha logrado en varias empresas humanas, aunque todavía no ha sido totalmente controlada.

Fusión fría La fusión fría es el nombre genérico dado a cualquier reacción nuclear de fusión producida a temperaturas y presiones cercanas a las normales, muy inferiores a las necesarias normalmente para la producción de reacciones termonucleares (millones de grados Celsius), utilizando equipamiento de relativamente bajo costo y consumo eléctrico para generarla. De manera común el nombre se asocia a experimentos realizados a finales de la década de 1980 en células electrolíticas en las que se sugería que se podía producir la fusión de deuterio en átomos de helio produciendo grandes cantidades de energía. Actualmente, no se ha probado que la fusión fría sea un proceso físicamente posible.

Reacciones de fusión nuclear El mayor problema con que cuenta esta fuente de energía es la enorme cantidad de energía requerida para iniciar la reacción, así como mantenerla durante un tiempo. Actualmente se está experimentado con 2 formas de conseguir la energía nuclear de fusión. El confinamiento inercial: consiste en contener la fusión mediante el empuje de partículas o de rayos láser proyectados contra una partícula de combustible, que provocan su ignición instantánea. Esta línea de investigación se ha visto que es inviable. El confinamiento magnético: consiste en contener el material a fusionar en un campo magnético mientras se le hace alcanzar la temperatura y presión necesarias. El hidrógeno a estas temperaturas alcanza el estado de plasma. Actualmente se halla en proceso de diseño y realización.

Fusión nuclear en la actualidad Actualmente se ha producido energía de fusión nuclear en dos proyectos distintos, el JET (Joint European Torus) de la Unión Europea en Oxfordshire, y el TFTR (Toroidal Fusion Thermonuclear Reactor) en Princeton. Los dos son dispositivos de fusión por confinamiento magnético. En 1991, en el JET se obtuvo un pico de 1’7 MW y en 1997 16’1 MW a costa de utilizar 25,7 MW para calentar el plasma, mostrando así su inviabilidad actual. El siguiente paso es construir un reactor para producir energía eléctrica a partir de la de fusión. Este reactor será ITER (International Thermonuclear Experimental Reactor), actualmente en fase de diseño y que se construirá en Francia, concebido para producir diez veces más energía de la necesaria para inducir la fusión, mediante el modelo Tokamak. Para el diseño y construcción de este gran reactor se han asociado la Unión Europea, Rusia, EE.UU. China, Corea del Sur, India y Japón, ya que el esfuerzo tecnológico y económico no puede ser afrontado por un solo país (El costo estimado total del proyecto se calcula en unos 10.300 millones de euros en los próximos 10 años). Con una altura total de 30 metros y una anchura de 40, la vasija del ITER, en forma de donut, tendrá un radio de 6,2 metros, 5.400 toneladas de peso, y una capacidad de generación de 500 MW, el equivalente a la producción de una planta eléctrica de tamaño medio. El sistema de confinamiento magnético, fabricado con materiales superconductores, inducirá una corriente eléctrica en el plasma para mantenerlo en condiciones estables.

Inconvenientes de la fusión nuclear Actualmente, la industria nuclear de fisión, presenta varios peligros: Además de producir una gran cantidad de energía eléctrica, también produce residuos nucleares que hay que albergar en depósitos aislados y controlados durante largo tiempo. Las emisiones contaminantes indirectas derivadas de la construcción de las centrales nucleares, de la fabricación del combustible y de la gestión posterior de los residuos radiactivos son muy peligrosas y podrían llegar a tener una gran repercusión en el medio ambiente y en los seres vivos si son liberados o vertidos a la atmósfera, llegando incluso a producir la muerte, y condenar a las generaciones venideras con mutaciones. Estos residuos tardan siglos en descomponerse y por lo que su almacenamiento debe asegurar protección y que no contaminen durante todo este tiempo. Uno de los procedimientos más utilizados es su almacenamiento en contenedores cerámicos, pero ahora se está proponiendo su almacenamiento en cuevas profundas, los llamados almacenamientos geológicos profundos (AGP) donde el objetivo final es que queden enterrados con seguridad durante varios miles de años aunque esto no puede garantizarse. Otra gran preocupación es que roben estos residuos y los utilicen como combustible para bombas atómicas o armas nucleares, ya que en sus inicios la energía nuclear se utilizó para fines bélicos. Por eso estas instalaciones poseen niveles de seguridad más elevados que el resto de instalaciones industriales.

Ventajas de la fusión nuclear Ventajas: La energía nuclear de fisión tiene como principal ventaja que no utiliza combustibles fósiles, por lo que no emite gases de efecto invernadero. Esto es importante debido al Protocolo de Kyoto, que obliga a pagar una tasa por cada tonelada de CO2 emitido. Además, genera gran cantidad de energía consumiendo muy poco combustible y las reservas de combustible nuclear son suficientes para abastecer a todo el planeta durante más de 100 años.