Astronomía desde el espacio

Slides:



Advertisements
Presentaciones similares
Capítulo I Gestión de E/S 1.- Gestión de E/S 2.- Hardware de E/S 3.- Software de E/S.
Advertisements

DISEÑO DE TRANSFERENCIA ENTRE REGISTROS
Rayos cósmicos Fabiana Sánchez.
Fundamentos de Diseño de Software INFT.1
Unidad 1: Fundamentos de Electrónica
ONDAS Y PERTURBACIONES
CALIDAD DE SERVICIO ELÉCTRICO.
CIRCUITOS INTEGRADOS Tecnología Mª Ángeles Puertas.
Facultad de Ingeniería Electrónica y Telecomunicaciones
METODOLOGÍAS ÁGILES “PROCESO UNIFICADO ÁGIL (AUP)
Ing. Alejandro Savarin INTI-Física y Metrología
Introducción Control digital
Introducción a los Procesadores Digitales de Señal (DSP)
Unidad 1: Sensores INTERFACES 1.
Presentado: Christian Camilo Pinzón García Cód.: Grupo 4.
Equipos de instrumentación y medida en comunicaciones ópticas
Ing. Jorge A. Abraham Técnicas Digitales II
SISTEMAS DE DISEÑO ASISTIDO POR COMPUTADORA
CURSO: UNIDAD 4: LENGUAJES HDL
HERRAMIENTAS CASE.
COMPONENTES FISICOS Y LÓGICOS DE LA PC
SHIFT²RAIL IP1 “Nueva Generación de Vehículos Ferroviarios” ALAMYS 08/12/2014.
“Control de un Ascensor y Adquisición de Datos con LABVIEW ”
2. ASYNCRONOUS TRANSFER MODE 2.1Características generales 2.2 Modelo de referencia del protocolo 2.3 Categorías de servicio ATM.
INSTITUTO TECNOLOGICO DE TOLUCA
Automatización I Instrumentación.
EL CALOR Y SUS PROPIEDADES
4. REGULADORES O CONTROLADORES
sELECCION DE MEDIO A USAR
Instalación de Computadoras 1 I
Electrónica aplicada al tratamiento de datos Procesadores digitales de señal (PDS) DSP: Digital Signal Processors (procesadores) DSP: Digital.
En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente.
SEGURIDAD EN SISTEMAS DE POTENCIA
Topología de anillo.
Introducción a los Sistemas de Medida
Resultados y simulación de las pruebas en haz de los módulos de silicio del SCT de ATLAS José E. García José E. García, C. García, S. González, M. Vos.
Fabricio N. Altamiranda Facundo J. Ferrer.  SEE  Que es?  Como se produce?  Classification  ASET  Como se produce?  Porque?  Modelo  Diseño 
PROYECTO OCÉANOS 2013 “Los Satélites”….
Tema 1: Introducción a la Ingeniería de Software
DISPOSITIVOS INTERNOS Y EXTERNOS DE UN COMPUTADOR
INTRODUCCIÓN A LA INGENIERÍA DEL SOFTWARE
INTRODUCCIÓN A LA ARQUITECTURA DE PC
“condición que necesita el usuario para resolver un problema o conseguir un objetivo determinado”. Los requisitos de un sistema son los aspectos que el.
Automatización Es la tecnología utilizada para realizar procesos o procedimientos sin la ayuda de las personas.
OPERAR EL EQUIPO DE COMPUTO
Tendencias Generales Dotación física Software lógica Más pequeño
Multimetro.
Introducción a las Ingenierías de la Información
SANTIAGO MORA BERMÚDEZ
Conectividad de cables
© 2007 Cisco Systems, Inc. Todos los derechos reservados.Cisco Public1 Capa física del modelo OSI Aspectos básicos de networking: Capítulo 8.
Fabricio N. Altamiranda Facundo J. Ferrer.  Grupo de Investigación.
Definición de sistema__________
Instituto Politécnico Nacional esime Zacatenco Ing
Tarea 7 1.¿Cuál es el origen de las manchas solares? 2.¿qué sale de ellas? 3.¿por qué es importante tecnológicamente monitorearlas permanentemente? 4.¿en.
Redes I Magistral Nro. 3 Capa 1: Física es un conjunto de reglas respecto al hardware que se emplea para transmitir datos. Entre los aspectos que se cubren.
MEDICIÓN DE NIVEL.
1 ELECTRÓNICA II M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) TUTORÍAS Martes y jueves de 11:30 a 13 y Viernes 9:30 a 13.
Introducción: A medida de que la temperatura de un cuerpo aumenta se vuelve más difícil medirla, ya sea por medios convencionales como los termómetros.
Fabricio N. Altamiranda Facundo J. Ferrer.  Grupo de Investigación.
EI, Profesor Ramón Castro Liceaga IV. AREAS DE EVALUACIÓN DE LA AUDITORIA EN INFORMÁTICA. UNIVERSIDAD LATINA (UNILA)
Amplificadores de Instrumentación
BUSES DE DATOS.
INDUSTRIAS DEL PETROLEO, PETROQUÍMICAS Y DEL GAS NATURAL ASEGURAMIENTO DE LA PRODUCCIÓN Y ADMINISTRACIÓN DE LA CONFIABILIDAD ISO/CD Date: 2005 –
Las fuentes de alimentación
WLAN (Wireless Local Area Network). WLAN  Es un sistema de comunicación de datos inalámbrico flexible muy utilizado como alternativa a la LAN cableada.
Capacitivos.
Verificación y Validación del Software
Amplificador Inversor V+ está conectada a tierra (V+=0). (V+) ­ (V-)=0, la terminal inversora (negativa) esta al mismo potencial que la no-inversora y.
SISTEMAS DE INFORMACION GEOGRAFICA (SIG) Néstor Acosta Rodríguez Código: 7137.
Transcripción de la presentación:

Astronomía desde el espacio Julio F. Rodríguez – Antonio C. López Curso de Astronomía - IAA

Esquema (II): Segunda sesión El entorno espacial Tecnología espacial :hardware y software. Procesamiento digital de señales.

6. El entorno espacial

El Espacio: ¿un entorno hostil? Carl Sagan afirmó que el espacio no era hostil al hombre, tan sólo, era indiferente. Restricciones fuertes en: Peso Tamaño Consumo Fiabilidad

El entorno según las fases (I) Pre-lanzamiento: Duración del proyecto (Suele ser entre 5 y 10 años. Disponibilidad de componentes y almacenamiento. Entorno de las pruebas muy sofisticado. Control cuidadoso del entorno: Habitáculos controlados en T, P, humedad y suciedad.

El entorno según las fases (II) Lanzamiento: Vibraciones Choques Variaciones de temperatura Variaciones de presión

El entorno según las fases (III) Fase operativa: Radiaciones Problemas térmicos Alto vacío Problemas electromagnéticos. Vibraciones Basura espacial

Los componentes Lista de componentes cualificados: NASA y ESA (ESCC QPL) Variedad muy escasa de componentes y tecnologías. Precio: órdenes de magnitud. Diferentes en características y flujo de prueba de los comerciales. Adquisición de grandes cantidades. Cualificación por cuenta propia prohibitiva.

Las vibraciones y choques Hay diferentes tipos: Cargas casi-estáticas: se propagan con la misma intensidad por todo la plataforma. Vibración seno: envolvente de las v. transitorias de baja frecuencia. Ruido acústico: la respuesta estructural a este ruido se mide en términos de vibración random. Choque Se mide la frecuencia de resonancia o frecuencia natural de los subsistemas.

Vibración y choque: elementos más frágiles Circuitos impresos: Montaje fundamental Dispositivos ópticos: lentes, prismas, redes, sensores. Dispositivos electrónicos. Mecanismos. Interfaces mecánicos entre diferentes piezas.

Los aspectos térmicos Rangos extendidos en temperatura. Viene caracterizado por el vacío. Fuentes de calor internas y externas: Radiación solar directa Radiación solar reflejada. Energía térmica radiada por los planetas (radiación planetaria) Radiación desde la plataforma al espacio profundo.

Los aspectos térmicos (II) Hace falta un control térmico: activos o pasivos Activo: Calentadores, Refrigeradores Sistemas móviles de refrigeración. Son más complejos que los pasivos y consumen recursos de potencia e incluso de telemedida. Pasivo: Acabado de superficies. Control de los caminos térmicos. Uso de sistemas de aislamiento: MLI (MultiLayer Isolation Caloductos

Los aspectos térmicos (III) Pruebas medioambientales en cámaras de termovacío (TVC). Se somete el equipo a una serie de ciclados.

Los problemas electromagnéticos Plataforma formada por múltiples instrumentos Aparecen interferencias electromagnética (EMI): Emisiones conducidas Emisiones radiadas Susceptibilidad conducida Susceptibilidad radiada Diseño de equipos para ser compatibles entre ellos (EMC)

Los problemas electromagnéticos (II) La supresión de las EMI a varios niveles: Circuito impreso Filtrado y aislamiento Apantallamientos La puesta a “Tierra”, denominada “grounding”.

Los circuitos impresos Selección de componentes, más o menos inmunes a las EMI. Trazado y características de las pistas. Posicionamiento de componentes. Planos de tierra y capas de alimentaciones.

Filtrado y aislamiento Previenen o mitigan la susceptibilidades y emisiones conducidas. Utilización de ferritas, condensadores, bobinas. Uso de condensadores pasamuros y de tres polos. Aislamiento con transformadores y optoacopladores.

El apantallamiento Equivalentes a los filtros pero para las emisiones y susceptibilidades radiadas. Apantallamientos de sistemas o partes de circuitos impresos. Apantallamientos de cables.

“Grounding” Literalmente consiste en la puesta a “tierra” (plataforma en este caso) Los más comunes utilizados en espacio son: Punto único en estrella Punto múltiple Punto múltiple con referencia única Flotante Punto encadenado

Basura espacial

Basura espacial: curiosidades El resto más antiguo aún en órbita es el segundo satélite estadounidense, el Vanguard I, lanzado el 17 de marzo de 1958 y que funcionó sólo durante 6 años. En 1965, durante el primer paseo espacial de un estadounidense, el astronauta del Géminis 4, Edward White perdió un guante. Durante un mes el guante estuvo en órbita a una velocidad de 28.000 km / h, convirtiéndose en la prenda de vestir más peligrosa de la historia. Más de 200 objetos, la mayoría bolsas de basura, salieron a la deriva de la estación espacial Mir durante sus primeros 10 años de vida. La mayor cantidad de basura espacial creada por la destrucción de una sola nave se debió a la etapa superior de un cohete Pegasus lanzado en 1994. Su explosión en 1996 creó una nube de unos 300.000 fragmentos de más de 4 mm, 700 de los cuales eran lo suficientemente grandes como para ser catalogados. Esta explosión, por si sola, duplicó el riesgo de colisión del Hubble.

La radiación en el espacio Rayos cósmicos galácticos El entorno natural del espacio es el responsable de muchas perturbaciones de los sistemas electrónicos a bordo de los vehículos espaciales. Los sistemas espaciales se ven envueltos durante su tiempo de vida en la interacción con un conjunto elevado de partículas. Estas partículas pueden ser clasificadas en dos conjuntos: las partículas atrapadas por las magnetosferas planetarias en los llamados cinturones, y las denominadas como transitorias. Las partículas atrapadas están formadas por electrones, protones e iones pesados que pueden tener una energía que va desde las decenas de MeV hasta los 500 MeV. Estas partículas se encuentran en zonas localizadas que constituyen áreas arriesgadas de navegación. Las partículas transitorias tienen orígenes distintos. Los protones e iones pesados proceden de las eyecciones de masa coronal o de las fulguraciones solares, con una energía que puede alcanzar el GeV, y las generadas fuera del Sistema Solar, denominados rayos cósmicos galácticos, que pueden alcanzar hasta los TeV, y que son producidos por las ondas de choque y los campos electromagnéticos interestelares. Protones solares & Iones pesados Partículas atrapadas

Elementos sensible a la radiación CMOS, circuitos bipolares, μProcesadores. LED’s y diodos láser. Optoacopladores, enlaces de fibra óptica. Sensores (Si, GaAs, células solares) Cableado y aislantes. Materiales ópticos. Detectores (Irm R-X, R-gamma) Criogenia

Efectos de la radiación Dosis total de ionización (TID) Efecto provocado por la exposición durante largo tiempo a la radiación. Daños por desplazamiento o NIEL (Non-Ionizing Energy Loss). Desplazamiento de átomos en la red cristalina debido al impacto de partículas. Efectos de eventos individuales (SEE) Interacciones individuales que producen daños temporales o permantentes.

Dosis Total de Ionización (TID) Se mide en Krad(SiO2). 1 Krad equivale a 100 erg/g Esta relacionada con la generación de pares huecos en los dispositivos MOS. Produce variación en los voltajes de umbral, formándose o corrientes de fugas o conmutación off-on a 0 V

Los efectos de eventos individuales (SEE) La transferencia de energía lineal (LET): Cantidad de carga en por unidad de longitud Se mide en MeV.cm2/mg El umbral de LET nos indica la inmunidad a los eventos individuales Pueden ser destructivos o no destructivos

SEE (II): efectos no destructivos Efectos individuales de cambio de estado SEU. Efectos múltiples de cambio de estado MBU. Efecto individual de interrupción funcional. Suceso individual de transitorio, SET. Se da en circuitos analógicos Suceso individual de perturbación, SED.

SEE (III): efectos destructivos Suceso simple de latchup, SEL. Muy peligroso Suceso simple de quemado, SEB. Suceso simple de snapback, SESB. Suceso simple de ruptura de puerta, SEGR.

Mitigación de los efectos de la radiación en el Espacio Impedir los problemas: Utilización de escudos protectores Colocación adecuada de los instrumentos Uso de componentes endurecidos a radiación. Diseño de sistemas tolerantes a fallos: redundancias Circuitos tolerantes a SEU

Las redundancias Dos categorías principales: Activas Stand-by No requieren de elementos externos de detección de fallo. Toman de manera autónoma de conmutar el elemento erróneo. Stand-by Necesitan elementos externos de detección de fallos. La conmutación del elemento erróneo es inducida de manera remota.

Correctores de SEU El SEU es característico de Flip-Flops y memorias (bit-flip). Se utilizan detectores y/o correctores: Detección de paridad Chequeo de redundancia cíclica (CRC) Codificación Hamming El EDAC: Error Detector And Corrector es uno de los más usados. En Giada se implementó en una FPGA.

7. Tecnología espacial

Proyecto Instrumento Espacial I.P. P.Manager Óptica Mecánica Electrónica SW AIV Comité Científico Térmica EGSE Test Ambientales Calibración Transporte etc. Fuentes DPU Adquisición Mecanismos Actuadores Proximidad Detectores TC/TM Cables y Conectores CONTROL CALIDAD

Consorcio Proyecto Espacial Los proyectos espaciales se suelen realizar con consorcios (internacionales) Cada grupo de trabajo tiene su IP y su PM Actividades AIV: Cada paquete de trabajo ha de hacer su integración (si procede), pruebas ambientales y calibraciones (funciones de transferencia) independientemente

Relación con Empresas Control de Calidad (INTA sí puede) Montaje Almacenaje de materiales y componentes Adquisición de materiales y componentes (cuando se puede CPP) TECNOLOGICA Se puede hacer todo el proyecto en la empresa

Diferencias en Espacio I Cualificación de los componentes Análisis y prevención de fallos y estudio de soluciones Radiación (fundamental en lógica) Masa Temperaturas Vacío Evacuación del calor Choque y vibraciones Control de Calidad PAPELES 40-50% del tiempo Costes

Diferencias en Espacio II Redundancias Los interfaces entre los distintos subsistemas deben fijarse claramente. Especial mención: Fuentes y TC/TM por ser con el S/C Software: Una documentación férrea Es lo único modificable en vuelo Parcheable Un modo SEGURO Gestión de contingencias Siempre bajo configuración Plazos temporales muy estrictos, muchas veces solo hay una ventana.

Cosas a tener en cuenta Redundancias Sistemas de detección y corrección de errores Ej. EDAC Traza exterior Ej. Watch dog & after watch dog register Puerto de test El hw que no lo rompa el sw El sw que no lo rompa el hw Planetary Protection (los que aterrizan)

Filosofía de Modelos Prototipos funcionales no representativos Modelo de Ingeniería (EM) Modelo Térmico y Estructural (STM) Modelo de Calificación (QM) Modelo de Vuelo (FM o PFM) Modelo de Repuesto (FS)

GIADA-2: PSU/CPU

Diagrama PSU

Soft_Start

Soft_Charger

FPGA FABRICANTES: Actel Xilinx Atmel Permiten el diseño en paralelo Reducción de masa, volumen y consumo Diseñar pensando en pulsos espurios Muchas de las ventajas de usar FPGA’s en usos comerciales se convierten a menudo en un problema al aplicar estos dispositivos a usos en el espacio. Parece que las FPGA’s se pueden modificar y corregir fácilmente, más tarde en el proceso del desarrollo Actel Xilinx Atmel FABRICANTES:

Tipos FPGA Actel

TMR Actel Design Techn RH

TMR Actel Design Techn RH

Flip-flops combinacionales DF1_CC DF1A_CC DF1B_CC DF1C_CC DFC1_CC DFC1A_CC DFC1B_CC DFC1D_CC DFE_CC DFE1B_CC DFE1C_CC DFEA_CC DFM_CC DFMA_CC DFM1B_CC DFM1C_CC DFP1_CC DFP1A_CC DFP1B_CC DFP1D_CC DFPC_CC DFPCA_CC

Commercial to Radiation-Hardened Design Migration (Actel)

Commercial to Radiation-Hardened Design Migration (Actel)

Vida del SW

Maestro Rafa I Todas las fases/documentación del SW deben cumplir con los estándares de ESA/NASA Pensar a largo plazo: en la construcción de los requerimientos del SW hay que pensar en como validarlos Resolver los requerimientos con pocos recursos de computación El diseño del SW ha de realizarse para poder parchearlo en vuelo Intensa/frustrante interacción en la fase de integración con el HW Fase de validación agotadoras y estrictas

Maestro Rafa II Mantenimiento de documentación consume muchos recursos Documentación desde el primer paso y en TODOS lo pasos Control de configuración a bajo nivel tanto en SW como en documentación Pocas veces hay soluciones ya existentes. Construcción de herramientas a medida para resolver problemas puntuales Viajes/teleconferencias/reuniones/mails constantes interrumpiendo el trabajo Exámenes periódicos por parte de ESA/NASA

Recomendaciones En la fase preliminar de los proyectos, debe haber una gran interacción entre los diseñadores de SW y HW para optimizar los requisitos para ambos. Prestar mucha atención a las diferencias de prestaciones, e incluso pinout, entre las versiones comerciales y espaciales de los componentes. No se deben reducir las prestaciones de las fuentes de alimentación por reducir masa, al final tienes problemas. El ruido debe filtrarse lo más cerca posible de la fuente donde se genera. Diseñar, sobre todo las FPGA’s, como un paranoico, es la forma de que falle menos.

Más Recomendaciones Debe de haber una gran interacción entre los equipos de trabajo, con modelos intermedios, para comprobar funcionalidades y prestaciones. Como la integración y caracterización se hace al final, aunque se planifica al principio, siempre falta tiempo y no se hace de la forma óptima. Las interfaces entre los distintos equipos deben de fijarse y quedar claramente definidas. No solo lo que hay que hacer si no también lo que NO se debe hacer. Aunque las FPGA’s son flexibles no son de goma, en cualquier caso se requieren simulaciones exhaustivas

Tendencias en Espacio Eliminación de cables y conectores Bajar consumos Mayor potencia de cálculo embarcado en base a DSP FPGA’s para todo Nanotecnología, mayor integración SOC, (System On Chip) CPU integradas en FPGA Reconfiguración Dispositivos analógicos programables

8. DSP

¿Por qué DSP? Cada vez queremos obtener más datos Los formatos de los detectores son cada vez más grandes Los anchos de banda son iguales Conclusión: comprimir más y mejor. Procesado abordo.

Telemetría Rosetta: Directamente a Tierra: entre 10 bps hasta 22 kbps. 12 h al día. Mass Memory de 25 Gbits. Exomars Orbital Relay: 256 kbps unos minutos 2 veces al día Directamente a Tierra: 100 kbps solo comunicaciones de emergencia

ESCC Microprocesadores

DSP Todo por 430 mA Max

SPARC

Otras soluciones Utilizar core de Leon-2 de ESA compatible con Sparc-V8 (hay una versión de ATMEL) Diseñar o adquirir cores, de funciones DSP necesarias para nuestra aplicación y empotrarlas en una FPGA.

La gran fiesta de los “Readmi” se acerca….