TEORÍA DE CONJUNTOS.

Slides:



Advertisements
Presentaciones similares
TEORÍA DE CONJUNTOS.
Advertisements

TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS 5º Profesor: LUIS GONZALO PULGARÍN R
Unidad II: Teoría de Conjuntos.
TEÓRIA DE CONJUNTOS Profesor: Rubén Alva Cabrera.
Desarrollo de Habilidades del Pensamiento Matemático
Teoría de Conjuntos Prof. Carlos Coronel R..
TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS Docente: Jesús Huaynalaya García.
UNIDAD 2 ING. ROBIN ANGUIZACA FUENTES
TEORIA DE CONJUNTOS.
TEORÍA DE CONJUNTOS Prof. Ofelia Nazario Bao.
Universidad César Vallejo
TEÓRIA DE CONJUNTOS Profesor: Ing. Oscar Guaypatin Pico.
MATEMÁTICA BÁSICA CERO
RELACION Y OPERACIÓN ENTRE CONJUNTOS
DIFERENCIA SIMÉTRICA DE CONJUNTOS Operaciones con Conjuntos
Universidad Cesar Vallejo
TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS 5º Profesor:
TEÓRIA DE CONJUNTOS.
Unidad 1: Lógica, Conjuntos y Clases Cuarta parte
CONCEPTOS FUNDAMENTALES DE MATEMÁTICAS. Números reales.
Eventos Ing. Raúl Alvarez Guale. Eventos Un evento es un subconjunto de un espacio muestral. Ejemplo: Sea S el numero que aparece en la cara superior,
TEORIA DE CONJUNTOS.
Leyes de la Probabilidad Luis Solórzano EFPEM/USAC Agosto 2016.
1 UNIVERSIDAD FERMIN TORO VICERRECTORADO ACADEMICO DECANATO DE INGENIERIA ESCUELA DE TELECOMUNICACIONES REALIZADO POR: MARIANGEL MILANO PROFESOR DOMINGO.
UNIDAD II TEORÍA DE CONJUNTOS Y SISTEMAS NUMÉRICOS.
FUNDAMENTOS DE PROGRAMACIÓN COMPUTACIONAL. Contenidos de la clase -Presentación del Docente -Presentación del Plan de Trabajo - Fechas de Evaluaciones.
Universidad Cesar Vallejo ALFA-UCV Teoría de Conjuntos.
AUTORES Act. VIELA E. MALDONADO RODRÍGUEZ
Funciones y gráficas ITZEL ALEJANDRA LOZOYARODRIGUEZ
Fundamentos para el Cálculo
ESTRATEGIAS PARA EL APRENDIZAJE DE LAS MATEMÁTICAS EN LA EDUCACIÓN A DISTANCIA CONJUNTOS NUMERICOS.
Conjuntos Numéricos Matemática.
UNIDAD 2 ING. ROBIN ANGUIZACA FUENTES
UNIVERSIDAD NACIONAL DE CHIMBORAZO
CONJUNTOS Álgebra Superior
Sesión 3.- Unidad II. Conjuntos
Conjuntos La guía sencilla Guía basada en :
OPERACIONES BÁSICAS CON CONJUNTOS
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS
Fundamentos de Probabilidad
UNIDAD EDUCATIVA VIRGILIO DROUET “El premio al esfuerzo es el triunfo”
Teoría de Conjuntos.
Desigualdades e Inecuaciones
Un conjunto es una colección de elementos. A={a, b, c} Notación: los conjuntos se denotan normalmente con letras mayúsculas y los elementos, con letras.
Prof. Lic. Javier Velásquez Espinoza
Profesor: Rubén Alva Cabrera. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
TEÓRIA DE CONJUNTOS 5º Profesor:
CONJUNTOS. CONJUNTOS CONJUNTO NULO O VACIO CONJUNTO UNIVERSAL CONJUNTO UNITARIO CONJUNTOS FINITOS E INFINITOS SUBCONJUNTOS DIAGRAMAS DE VENN OPERACIONES.
Desigualdades e Inecuaciones
CONJUNTOS NUMÉRICOS Números Naturales ( N ) N={1;2;3;4;5;....}
CONJUNTOS Álgebra Superior
Clase Nº 1 Concepto de Probabilidad
Números complejos MATEMÁTICAS I.
CONJUNTOS. CONJUNTOS CONJUNTO NULO O VACIO CONJUNTO UNIVERSAL CONJUNTO UNITARIO CONJUNTOS FINITOS E INFINITOS SUBCONJUNTOS DIAGRAMAS DE VENN OPERACIONES.
MATEMÁTICAS NM1 CONJUNTOS NUMÉRICOS.
CONJUNTOS. Consideremos un conjunto como una colección de objetos. Los componentes individuales del conjunto se llaman elementos. Un conjunto puede tener.
Lic. Hugo Fernández Delgado. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
Profesor: Jairo Andrade. Es la agrupación, colección o grupo de objetos que esta bien definida (que poseen una o varias características o criterio en.
Profesor: Rubén Alva Cabrera. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
Teoría de Conjuntos Conjuntos. CONCEPTO DE CONJUNTO Es considerado un término primitivo, por lo tanto se acepta como un término no definido. Es una colección.
Profesor: Rubén Alva Cabrera. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
Clase Nº 1 Concepto de Probabilidad
Definición de Conjuntos. Clasificación de Conjuntos. Representación. Subconjuntos. Conjunto Potencia. Propiedades del conjunto Potencia. Relaciones.
1 Ingeniería en Sistemas Matemática Discreta. 2 EJEMPLOS DE CONJUNTOS:  N: conjunto de los números naturales.N: conjunto de los números naturales. 
Tecnologías de la Información y Comunicación Unidad 1. Teoría axiológica de conjuntos Contenido 1.1. Introducción 1.2. Conjuntos, elementos y subconjuntos.
Conjuntos Subtítulo. Conjuntos OBJETIVOS ›Reconoce un conjunto ›Define diferentes conjuntos ›Expresar por comprensión y extensión ›Determina la cardinalidad.
Transcripción de la presentación:

TEORÍA DE CONJUNTOS

Definición : Un conjunto se puede entender como una colección de elementos con características comunes. Ejemplo: En la figura adjunta tienes un Conjunto de Personas

NOTACIÓN Todo conjunto se representa con letras mayúsculas A, B, C, y sus elementos con letra minúscula a,b,c,… y entre llaves { } separados mediante comas. Ejemplo: El conjunto de las letras de nuestro alfabeto; a, b, c, ..., x, y, z. se puede escribir así: L={ a, b, c, ..., x, y, z}

En teoría de conjuntos no se acostumbra repetir los elementos por ejemplo: El conjunto {x, x, x, y, y, z } simplemente será { x, y, z }. Al número de elementos que tiene un conjunto Q se le llama CARDINALIDAD DEL CONJUNTO y se le representa por n(Q). Ejemplo: A= {a, b, c, d, e} su cardinal n(A)= B= {x, x, x, y, y, z} su cardinal n(B)= 5 3

RELACION DE PERTENENCIA Para indicar que un elemento pertenece a un conjunto se usa el símbolo: Si un elemento no pertenece a un conjunto se usa el símbolo: Ejemplo: Sea M = {2, 4, 6, 8, 10} ...se lee 2 pertenece al conjunto M ...se lee 5 no pertenece al conjunto M

Hay dos formas de denotar un conjunto, por Extensión y por Comprensión NOTACIÓN DE CONJUNTOS Hay dos formas de denotar un conjunto, por Extensión y por Comprensión I) POR EXTENSIÓN Es aquella forma mediante la cual se indica cada uno de los elementos del conjunto. Ejemplos: A) El conjunto de los números pares mayores que 5 y menores que 20. A = { 6, 8, 10, 12, 14, 16, 18 }

B) El conjunto de números negativos impares mayores que -10. II) POR COMPRENSIÓN Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: P = { los números dígitos } se puede entender que el conjunto P esta formado por los números 0,1,2,3,4,5,6,7,8,9.

Otra forma de escribir es: P = { x / x = dígito } se lee “ P es el conjunto formado por los elementos x tal que x es un dígito “ Ejemplo: Expresar por extensión y por comprensión el conjunto de días de la semana. Por Extensión : D = { lunes, martes, miércoles, jueves, viernes, sábado, domingo } Por Comprensión : D = { x / x = día de la semana }

DIAGRAMAS DE VENN Los diagramas de Venn que se deben al filósofo inglés John Venn (1834-1883) sirven para representar conjuntos de manera gráfica mediante dibujos ó diagramas que pueden ser círculos, rectángulos, triángulos o cualquier curva cerrada. T M A 7 6 (2;4) (5;8) 8 o 4 e a (7;6) 5 i (1;3) 1 u 3 9 2

CONJUNTOS ESPECIALES CONJUNTO VACÍO Es un conjunto que no tiene elementos, también se le llama conjunto nulo. Generalmente se le representa por los símbolos: o { } A = o A = { } se lee: “A es el conjunto vacío” o “A es el conjunto nulo “ Ejemplos: M = { números mayores que 9 y menores que 5 } P = { x / }

CONJUNTO UNITARIO Es el conjunto que tiene un solo elemento. Ejemplos: F = { x / 2x + 6 = 0 } ; G = CONJUNTO FINITO Es el conjunto con limitado número de elementos. Ejemplos: E = { x / x es un número impar positivo menor que 10 } N = { x / x2 = 4 }

CONJUNTO INFINITO Es el conjunto con ilimitado número de elementos. Ejemplos: R = { x / x < 6 } S = { x / x es un número par } ; CONJUNTO UNIVERSAL Es un conjunto referencial que contiene a todos los elementos de una situación particular, generalmente se le representa por la letra U Ejemplo: El universo o conjunto universal de todos los números es el conjunto de los NÚMEROS COMPLEJOS.

RELACIONES ENTRE CONJUNTOS SUBCONJUNTO Un conjunto A es Subconjunto de otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : Se lee : A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : B A

PROPIEDADES: I ) Todo conjunto es subconjunto de si mismo. II ) El conjunto vacío se considera sub conjunto de cualquier conjunto. III ) Si A es sub conjunto de B ( ) y B es sub conjunto de A ( ) entonces A=B IV ) Si A no es subconjunto de B entonces se representa como ( ) V ) Simbólicamente:

IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x2 = 9 } y B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3,3} y B = {-3,3} ,por lo tanto A=B Simbólicamente :

   CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS  B A 7 9 4  6 5 3 2 1 8 

CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a},{b},{a, b},{a,b,c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a} F ¿ Es correcto decir que {b} F ? NO Porque {b} es un elemento del conjunto F ,lo correcto es {b} F

CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Pot(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo: Sea A = { m,n,p } Los subconjuntos de A son {m}, {n}, {p}, {m,n}, {m,p}, {n,p}, {m,n,p}, Φ Entonces el conjunto potencia de A es: P(A) = { {m},{n},{p},{m,n},{m,p},{n,p},{m,n,p},Φ } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?

el conjunto B tiene 5 elementos entonces: Observa que el conjunto A tiene 3 elementos y su conjunto potencia o sea P(A) tiene 8 elementos. PROPIEDAD: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es 2n. Ejemplo: Dado el conjunto B ={x / x es un número par y 5< x <15 }. Determinar el cardinal de P(B). Observa que el conjunto B tiene 5 elementos entonces: Card P(B)= = 25 =32 Si 5<x<15 y es un número par entonces B= {6;8;10;12;14}

CONJUNTOS NUMÉRICOS Números Naturales ( N ) N={1;2;3;4;5;....} Números Enteros ( Z ) Z={...;-2;-1;0;1;2;....} Números Racionales (Q) Q={...;-2;-1; ;0; ; ; 1; ;2;....} Números Irracionales ( I ) I={...; ;....} Números Reales ( R ) R={...;-2;-1;0;1; ;2;3;....} Números Complejos ( C ) C={...;-2; ;0;1; ;2+3i;3;....}

CONJUNTOS NUMÉRICOS C C R Q Z Nº I N

CONJUNTOS NUMÉRICOS P={3} Q={-3;3} F = { } EJEMPLOS: Expresar por extensión los siguientes conjuntos: Q={-3;3} A ) F = { } B ) C ) D ) E )

UNION DE CONJUNTOS A B 2 1 8 7 7 6 6 3 5 5 9 4 Ejemplo: El conjunto “A unión B” que se representa asi es el conjunto formado por todos los elementos que pertenecen a A,a B o a ambos conjuntos. Ejemplo: A B 2 1 8 7 7 6 6 3 5 5 9 4

PROPIEDADES DE LA UNIÓN DE CONJUNTOS 1. A U A = A 2. A U B = B U A 3. A U Φ = A 4. A U U = U 5. (AUB)UC =AU(BUC) 6. Si AUB=Φ  A=Φ  B=Φ

INTERSECCION DE CONJUNTOS El conjunto “A intersección B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y pertenecen a B. Ejemplo: A B 2 1 8 7 7 6 6 3 5 5 9 4

PROPIEDADES DE LA INTERSECCIÓN DE CONJUNTOS 1. A A = A 2. A B = B A 3. A Φ = Φ 4. A U = A 5. (A B) C =A (B C) 6. A U (B C) =(AUB) (AUC) A (B U C) =(A B) U (A C)

DIFERENCIA DE CONJUNTOS El conjunto “A menos B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y no pertenecen a B. Ejemplo: A B 2 1 8 7 7 6 6 3 5 5 9 4

¿A-B=B-A? El conjunto “B menos A” que se representa es el conjunto formado por todos los elementos que pertenecen a B y no pertenecen a A. Ejemplo: A B 2 1 8 7 7 6 6 3 5 5 9 4

COMPLEMENTO DE UN CONJUNTO Dado un conjunto universal U y un conjunto A, se llama complemento de A al conjunto formado por todos los elementos del universo que no pertenecen al conjunto A. Notación: A’ o AC Simbólicamente: A’ = U - A Ejemplo: U ={1,2,3,4,5,6,7,8,9} y A ={1, 3, 5, 7, 9}

U A A 8 2 3 1 7 A’={2,4,6,8} 5 9 6 4 PROPIEDADES DEL COMPLEMENTO 1. (A’)’=A 4. U’=Φ 2. AUA’=U 5. Φ’=U 3. A A’=Φ