ÁLGEBRA BÁSICA PRIMER SEMESTRE. ÁLGEBRA BÁSICA PRIMER SEMESTRE.

Slides:



Advertisements
Presentaciones similares
Dra. Noemí L. Ruiz Limardo Revisado 2011 © Derechos Reservados
Advertisements

DEPARTAMENTO DE MATEMÁTICAS
TEORÍA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS.
INSTITUCION EDUCATIVA REPÚBLICA DE VENEZUELA
TEÓRIA DE CONJUNTOS Profesor: Rubén Alva Cabrera.
Desarrollo de Habilidades del Pensamiento Matemático
CONJUNTOS.
UNIDAD 2 CONJUNTOS.
Teoría de conjuntos Un conjunto es una colección o clase de objetos bien definidos y diferenciables entre sí. Los conjuntos pueden ser finitos o infinitos.
   Conjuntos.
CONJUNTOS Luis Figueroa S..
FUNDAMENTOS DE LA TEORÍA DE CONJUNTOS
Teoría de Conjuntos Prof. Carlos Coronel R..
TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS Docente: Jesús Huaynalaya García.
UNIDAD 2 ING. ROBIN ANGUIZACA FUENTES
TEORIA DE CONJUNTOS.
Valor Absoluto.
 En Pascal el Conjunto es un tipo de dato intrínseco llamado Set, mediante el cual se puede representar el estado, activo o inactivo, de una serie de.
TEÓRIA DE CONJUNTOS Profesor: Ing. Oscar Guaypatin Pico.
Capítulo 3: Conjuntos Autor: José Alfredo Jiménez Murillo.
COLEGIO VIRTUAL GERSAIN
TEÓRIA DE CONJUNTOS.
LOS CONJUNTOS Y SUS CLASES 4°
TEÓRIA DE CONJUNTOS.
ÁLGEBRA BÁSICA PRIMER SEMESTRE.
Ingeniería Industrial Ingeniería en Sistemas de Información
Estadística Combinatoria. Índice: 1.- Introducción. 2.- Factorial de un número 3.- Clasificación: Variaciones con y sin repetición Permutaciones.
1 UNIVERSIDAD FERMIN TORO VICERRECTORADO ACADEMICO DECANATO DE INGENIERIA ESCUELA DE TELECOMUNICACIONES REALIZADO POR: MARIANGEL MILANO PROFESOR DOMINGO.
Bioestadística Elementos de Probabilidad para la Inferencia Estadística.
UNIDAD II TEORÍA DE CONJUNTOS Y SISTEMAS NUMÉRICOS.
Universidad Cesar Vallejo ALFA-UCV Teoría de Conjuntos.
DEFINICIONES BASICAS PLANO CARTESIANO.- (Liga).
CONJUNTOS Área Académica: Ingeniería Mecánica
UNIDAD 2 ING. ROBIN ANGUIZACA FUENTES
TEORÍA DE CONJUNTOS POR: FÉLIX ORTIZ TAMAYO
INSTITUCION EDUCATIVA REPÚBLIC A DE VENEZUELA
MATEMÁTICA DISCRETA Y LÓGICA 1
Fundamentos de Probabilidad
LA INTERSECCION DE CONJUNTOS
UNIDAD V TEORÍA DE CONJUNTOS “Aplicación de conjuntos a casos reales” ISC. Claudia García Pérez En este material veremos como aplicar la notación de.
Un conjunto es una colección de elementos. A={a, b, c} Notación: los conjuntos se denotan normalmente con letras mayúsculas y los elementos, con letras.
Prof. Lic. Javier Velásquez Espinoza
Profesor: Rubén Alva Cabrera. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
TEÓRIA DE CONJUNTOS 5º Profesor:
CONJUNTOS. CONJUNTOS CONJUNTO NULO O VACIO CONJUNTO UNIVERSAL CONJUNTO UNITARIO CONJUNTOS FINITOS E INFINITOS SUBCONJUNTOS DIAGRAMAS DE VENN OPERACIONES.
PRODUCTO CARTESIANO RELACIONES BINARIAS. Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A × B, es el conjunto de todos los.
Presentación P. Point del curso de Introducción a la Computación dictado por el Prof. Juan Gallo 22/11/2018 8:37 Prof. Ing.S.C. J. Gallo.
TEORÍA DE CONJUNTOS.
Unidad 3 Números Reales.  Clasificación de los Números Reales en el Siguiente Cuadro.
INSTITUCION EDUCATIVA REPÚBLIC A DE VENEZUELA
Técnicas de conteo: Permutaciones y variaciones
CONJUNTOS. CONJUNTOS CONJUNTO NULO O VACIO CONJUNTO UNIVERSAL CONJUNTO UNITARIO CONJUNTOS FINITOS E INFINITOS SUBCONJUNTOS DIAGRAMAS DE VENN OPERACIONES.
Matrices Conceptos básicos. Matrices Buscando formas para describir situaciones en matemáticas y economía, llegamos al estudio de arreglos rectangulares.
CONJUNTOS. Consideremos un conjunto como una colección de objetos. Los componentes individuales del conjunto se llaman elementos. Un conjunto puede tener.
Lic. Hugo Fernández Delgado. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
CONJUNTOS Área Académica: Ingeniería Mecánica Profesor: Ing. Francisco Javier Barrera González. Periodo: Julio – Diciembre 2016.
INSTITUCION EDUCATIVA REPÚBLIC A DE VENEZUELA
Profesor: Jairo Andrade. Es la agrupación, colección o grupo de objetos que esta bien definida (que poseen una o varias características o criterio en.
Profesor: Rubén Alva Cabrera. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
NOTACIONES DE CONJUNTOS Y DIAGRAMAS DE VENN Conjunto universal: U Conjunto vacío: Ø Subconjunto: A  B Unión de conjuntos: A  B Intersección de conjuntos:
Teoría de Conjuntos Conjuntos. CONCEPTO DE CONJUNTO Es considerado un término primitivo, por lo tanto se acepta como un término no definido. Es una colección.
Profesor: Rubén Alva Cabrera. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES.
Definición de Conjuntos. Clasificación de Conjuntos. Representación. Subconjuntos. Conjunto Potencia. Propiedades del conjunto Potencia. Relaciones.
1 Ingeniería en Sistemas Matemática Discreta. 2 EJEMPLOS DE CONJUNTOS:  N: conjunto de los números naturales.N: conjunto de los números naturales. 
Tecnologías de la Información y Comunicación Unidad 1. Teoría axiológica de conjuntos Contenido 1.1. Introducción 1.2. Conjuntos, elementos y subconjuntos.
Conjuntos Subtítulo. Conjuntos OBJETIVOS ›Reconoce un conjunto ›Define diferentes conjuntos ›Expresar por comprensión y extensión ›Determina la cardinalidad.
Transcripción de la presentación:

ÁLGEBRA BÁSICA PRIMER SEMESTRE

TEORÍA DE CONJUNTOS LE. SARA INÉS DE LA LLATA UNIDAD I TEORÍA DE CONJUNTOS LE. SARA INÉS DE LA LLATA

1.1 Notación y Representación de Conjuntos Cuando el hombre primitivo se agrupa en sociedades, necesita distinguir entre lo que le pertenece y lo que no es suyo y surge entonces un elemento matemático : COLECCIÓN O CONJUNTO DE OBJETOS

HISTORIA La Teoría de Conjuntos fue estudiada por el Matemático Alemán George Ferdinand Cantor (1845 – 1918) Otro matemático que contribuyó a la Teoría fue el Inglés John Venn (1834 – 1923) a quien se deben los diagramas que llevan su nombre.

HISTORIA La representación de los conjuntos de forma geométrica fue ampliada por Augustus de Morgan. En tanto que George Boole, introduce las operaciones de Unión, Intersección y Complemento de Conjuntos.

1.1.1 DEFINICIÓN Conjunto: Colección de objetos bien definida que se entiende se presentan juntos. Estos objetos se llaman miembros o elementos. Colección de objetos, que tienen al menos una propiedad común, por la cual se dice que pertenecen a dicho conjunto específico.

Ejemplos A) El conjunto de los 12 meses del año; B) Números pares menores que 10; C) Números de tres dígitos, no repetidos, que se pueden formar con los números 2, 6 y 7; D) Las letras del abecedario, E) Los alumnos del primer semestre de Bachillerato de UPAEP, F) Las partes del auto que forman un Bora. Nótese que en algunos casos el conjunto consiste en objetos físicos reales, en otros los elementos son abstractos, es decir existen sólo como ideas.

1.1.2 NOTACIÓN: Expresión y Representación de Conjuntos Usaremos letras mayúsculas A, C, X, Z. Incluiremos sus elementos dentro de llaves { } separados por comas. El símbolo  significa “es elemento de”. El símbolo  significa “no es elemento de” A = {2,4,6,8} o A = {2,8,6,4} “Forma extensiva o enumerativa” A = {x  x es un número par menor que 10} “Forma comprensiva” A “Diagrama de Venn ” 2 6 4 8

A = {xx es un número par menor que 10} ¿CÓMO SE LEE LA FORMA COMPRENSIVA QUE DESCRIBE LA ENUMERATIVA, TAMBIÉN LLAMADA TABULAR? A = {xx es un número par menor que 10} “A es el conjunto formado por elementos x, tal que x es un número par menor que 10” B = {xx son números de tres dígitos diferentes, que pueden formarse con 2, 6 y 7} “B es el conjunto formado por elementos x, tal que x, son números de tres dígitos diferentes que pueden formarse con los números 2, 6 y 7”

PERMUTACIONES El Conjunto B esta formado por Permutaciones del número 267, es decir por aquellos números que usan los tres dígitos en diferente posición, por tanto también puede escribirse: B = {xx son permutaciones del número 267} “B es el conjunto formado por elementos x, tal que x, son todas las permutaciones del número 267”

EJERCICIO DE COMPRENSIÓN K = {xx son permutaciones del número 1357} Escribirlo de forma enumerativa y cómo se lee. Calculamos el número de elementos mediante el factorial de los dígitos, es decir 4 y se escribe como: 4! = 1 x 2 x 3 x 4 = 24 K = {1357, 1375, 1537, 1573, 1735, 1753, 3157, 3175, 3517, 3571, 3715, 3751, 5137, 5173, 5317, 5371, 5713, 5731, 7135, 7153, 7315, 7351, 7513, 7531}

Pertenencia Cuando un elemento forma parte de un conjunto, éste se identifica mediante el símbolo . Ejemplo: A = {2,4,6,8} Por lo tanto 4  A Se lee 4 es elemento de A Si un elemento no pertenece a un conjunto, éste se identifica mediante el símbolo . Ejemplo: A = {2,4,6,8} Por lo tanto 1  A 1 no es elemento de A

USANDO LA PERTENENCIA TAMBIÉN PODEMOS LEER CONJUNTOS DE DIFERENTE MANERA Existen conjuntos de números que son múltiplos de otro, por ejemplo el conjunto de números múltiplos de 2 o pares, se denota de la siguiente manera:  2 = {2, 4, 6, 8, 10, 12, 14, …} Sabiendo esto podemos reescribir el conjunto: A = {x  x es un número par menor que 10} como: A = {x  2  x < 10} “A es el conjunto de elementos x que pertenecen a los múltiplos de 2, tal que x es menor que 10”

EJERCICIO DE COMPRENSIÓN a) M = {xx son permutaciones de la palabra amor} Escribirlo de forma enumerativa y cómo se lee.  b) 3 = { } c) 5 = { } Dibujar el Diagrama de Venn. d) “R es el conjunto de elementos x que pertenecen a los múltiplos de 3, tal que x es menor que 360” Escribirlo de forma enumerativa y comprensiva.