Taller de Ingeniería Industrial

Slides:



Advertisements
Presentaciones similares
INTRODUCCIÓN La simulación de eventos discretos es una herramienta de análisis de operaciones de gran potencial que se está utilizando en la actualidad.
Advertisements

DISEÑO DE EXPERIMENTOS EXPERIMENTOS DE COMPARACIÓN SIMPLE
LICENCIATURA EN SISTEMAS COMPUTACIONALES EN ADMINISTRACION
Programa de Análisis Numérico
Introducción al Modelado y Simulación de Sistemas
INTRODUCCION AL MODELADO
Introducción a la Simulación
MODELADO DE SISTEMAS Jorge Sauri 2007.
Simulación Sexto Cuatrimestre
INVESTIGACION DE OPERACIONES I
Simulación Prof. Daniel Ramírez C..
DESCRIPCION DE SISTEMAS
Metodología.
UNIDAD I MODELOS Y TOMA DE DECISIONES
Introducción a la Simulación
Para modelar un problema: Identificar el problema
Modelización y Simulación en Ingeniería Química.
Representación en espacio de estado
Investigación de operaciones : Método
Universidad Autónoma San Francisco
BASES de la ELECTROMEDICINA
MODELADO Y SIMULACIÓN DE SISTEMAS
MICROECONOMIA Elaboración de Teorías y modelos: Explicación
METODOLOGIA DE LA PROGRAMACION
CLASIFICACIÓN DE COMPUTADORAS
Unidad 4 Conceptos de sistema
Capítulo 3 Etapas de un Proyecto de simulación
Estadística Descriptiva Tema I. Conceptos Básicos
Econometría I Tema 1 Introducción
Tema 12 – Conceptos Básicos
METODOS DETERMINISTICOS
Facultad de Derecho y Ciencias Políticas Carrera de Ciencias Políticas
Física General FMF024-Clase A S1.
Modelos Es una abstracción de la realidad.
SOFTWARE DE SIMULACION
Modelado matemático de sistemas de control
INTRODUCCIÓN A LA SIMULACIÓN DE EVENTOS DISCRETOS
Modelado de Sistemas a Eventos Discretos.
Introducción al Modelado y Simulación de Sistemas
MODELACIÓN MATEMÁTICA
TAREA: Simular un evento cotidiano REQUISITOS Hacerlo por computadora Permitir la manipulación de variables Puede usar software a la medida o hacerlo mediante.
Pasos de un estudio de simulacion (repaso).
UNIDAD 2. ALGORITMOS Y ESTRUCTURAS DE DATOS.
INVESTIGACION DE OPERACIONES
SISTEMAS Y MODELOS Conceptos Básicos Tutor: FOLGER FONSECA Asignatura:
ESTADÍSTICAS DESCRIPTIVA
Simular: Representar una cosa, fingiendo o imitando lo que no es.
SIMULACION.
Métodos de Análisis Ingenieril
Sistemas, Procesos y Modelos
CLASIFICACION DE LAS COMPUTADORAS
Se emplea cuando: - el modelo real no esta disponible
DEFINICIÓN DE OBJETO Un objeto es aquello que puede ser observado, estudiado y aprendido CARACTERÍSTICAS nos permiten conocerlos mediante la observación,
FUNDAMENTOS DE MARKETING
Modelos matemáticos y solución de problemas
COMPLETA LOS ESPACIOS CON LA PALABRA ADECUADA 1.LOS _______________________ SE DEFINEN COMO LA _________________LÓGICA DE _________PARA SOLUCIONAR UN.
Simulación Área Académica: Licenciatura en Ingeniería Industrial
UNIVERSIDAD ESTATAL DE SONORA Definición e Importancia de la
Elaboración de algoritmos usando lógica de programación
Estimación y contraste de hipótesis
INSTRUCTOR: DR. JORGE ACUÑA
22 de octubre de   ¿Hacia dónde reorientar el currículo en la Educación media superior?  ¿Qué, cómo y para qué aprender la disciplina correspondiente.
Ramas de I.A. ROBOTICA SISTEMAS DE VISION SISTEMAS EXPERTOS
Proyecto de Modernización De Secretarías de Educación
ESTADÍSTICA DESCRIPTIVA
Que es un modelo.
Hernández Camacho Víctor Jesus Islas Sánchez Karla Vanessa
Simulación de Sistemas
Simulacion. Simulación Es la construcción de modelos informáticos que describen la parte esencial del comportamiento de un sistema de interés, así como.
INVESTIGACION CUANTITATIVA Métodos, Técnicos y Procedimientos para el estudio de los Derechos Humanos Jesús Conde C.I: Metropolitano I.
Transcripción de la presentación:

Taller de Ingeniería Industrial Ing. Felipe Torres Clase 8: Simulación de Sistemas

“una colección de entes que interactúan para lograr algún objetivo” ¿Qué es un sistema? “una colección de entes que interactúan para lograr algún objetivo” Schmidt y Taylor (1970) Es un término que identifica los elementos y la dinámica de un fenómeno que se pretende entender, analizar, y/o diseñar, desde el punto de vista de la disciplina correspondiente”

¿Qué es un sistema? Persigue un objetivo. Dependen del observador. Parte del sistema Relación Límite del sistema Es un conjunto de partes inter-relaciondas. Existe en un medio ambiente separado por sus límites. Persigue un objetivo. Dependen del observador.

¿Qué es un modelo? Es una abstracción de la realidad. Es una representación de la realidad que ayuda a entender cómo funciona. Es una construcción intelectual y descriptiva de una entidad en la cual un observador tiene interés. Se construyen para ser transmitidos. Supuestos simples son usados para capturar el comportamiento importante. Un modelo es un sistema desarrollado para entender la realidad y en consecuencia para modificarla. No es posible modificar la realidad, en cierta dirección, si es que no se dispone de un modelo que la interprete.

Modelos Modelo Observador Sistema Real

¿Para qué sirve un modelo? Ayuda para el pensamiento Herramienta de predicción Para entrenamiento e instrucción Ayuda para la experimentación Ayuda para la comunicación ¿el modelo o la realidad?

Modelos Mentales y Formales Modelos Mentales. Depende de nuestro punto de vista, suele ser incompletos y no tener un enunciado preciso, no son fácilmente transmisibles. Ideas, conceptualizaciones Modelo Formales. Están basados en reglas, son transmisibles. Planos, diagramas, maquetas Piedra de Sayhuite, Abancay

Modelos Icónicos y Abstractos Modelos analógicos Modelos a escala Modelos físicos Simulación por computadora matemáticos. Modelos Modelos Icónicos y Abstractos icónico abstracto Exactitud Abstracción Planta piloto Modelo de un átomo, globo terráqueo, maqueta Reloj, medidores de voltaje, gráfica de volumen/costo Modelos de colas, modelos de robots Velocidad, ecuaciones diferenciales. Modelo analógico. Son aquellos en los que una propiedad del objeto real está representa-da por una propiedad sustituida, por lo que en general se comporta de la misma manera.

Tipos de modelos Simulación por computadora estocástico simulación de Montecarlo tiempo-continuo determinístico tiempo-discreto estático dinámico Estocástico. Uno o más parámetros aleatorios. Entradas fijas produce salidas diferentes Determinístico. Entradas fijas producen salidas fijas Estático. Estado del sistema como un punto en el tiempo Dinámico. Estado del sistema como cambios en el tiempo Tiempo-continuo. El modelo permite que los estados del sistema cambien en cualquier momento. Tiempo-discreto. Los cambios de estado del sistema se dan en momentos discretos del tiempo.

Estocástico - Determinístico Si el estado de la variable en el siguiente instante de tiempo no se puede determinar con los datos del estado actual Método analítico: usa probabilidades para determinar la curva de distribución de frecuencias Determinístico Si el estado de la variable en el siguiente instante de tiempo se puede determinar con los datos del estado actual Método numérico: algún método de resolución analítica xi yi xi yi

Continuo - Discreto Continuo El estado de las variables cambia continuamente como una función del tiempo e = f (t) Método analítico: usa razonamiento de matemáticas deductivas para definir y resolver el sistema Discreto (*) El estado del sistema cambia en tiempos discretos del tiempo e = f(nT) Método numérico: usa procedimientos computacionales para resolver el modelo matemático.

Estático - Dinámico Estático Si el estado de las variables no cambian mientras se realiza algún cálculo f [ nT ] = f [ n(T+1) ] Método analítico: algún método de resolución analítica. Dinámico (*) Si el estado de las variables puede cambiar mientras se realiza algún cálculo f [ nT ] ≠ f [ n(T+1) ] Método numérico: usa procedimientos computacionales para resolver el modelo matemático.

Simulación como herramienta de estudio Métodos analíticos: predicen el comportamiento de una o varias características del sistema (variable de respuesta) en función de ciertas variables (variables de control), tiene una solución analítica. EXPERIMENTACIÓN REAL MODELO FISICO Modelo a escala Prototipo MÉTODOS ANALÍTICOS ESTUDIO DE UN SISTEMA EXPERIMENTACIÓN CON MODELO MATEMÁTICO SISTEMA REAL MÉTODOS NUMÉRICOS SIMULACIÓN DE SISTEMAS OTROS MÉTODOS NUMÉRICOS Modelo físico: Una imitación mas simple del sistema real, cuya experimentación, bajo condiciones controladas permite estudiar el comportamiento del sistema de manera natural. Metodos numéricos: Estudian sistemas con muchas variables cuyas relaciones no son fáciles de resolver como para encontrar una solución analítica, pero el modelo es útil para analizar el sistema.

Métodos numéricos Los experimentos por simulación tratan de imitar el comportamiento del sistema Es posible animar la simulación imitando el sistema real Se denominan comúnmente experimento virtual Algunas ventajas Se puede simular el comportamiento sin afectarlo, lo que es menos costoso El costo marginal de nuevas simulaciones es bajo Se pueden simular sistemas inexistentes Utilizado para prototipos o para nuevos productos o servicios Los experimentos reales no son siempre fidedignos, ya que las personas pueden cambiar su comportamiento al sentirse observadas, afectando el resultado.

Simulación Es la construcción de modelos informáticos que describen la parte esencial del comportamiento de un sistema de interés, así como diseñar y realizar experimentos con el modelo y extraer conclusiones de sus resultados para apoyar la toma de decisiones. Se usa como un paradigma para analizar sistemas complejos. La idea es obtener una representación simplificada de algún aspecto de interés de la realidad. Permite experimentar con sistemas (reales o propuestos) en casos en los que de otra manera esto sería imposible o impráctico.

Ejemplo de una simulación de una central telefónica usando “Arena”

Ejemplos de simulación Simulación de un punto de seguridad en un aeropuerto http://www.youtube.com/watch?v=OBiL38-nQGg http://www.youtube.com/watch?v=jR5KEz9RhXY Simulación de la evacuación de una oficina http://www.youtube.com/watch?v=0pILzhLpMPc

Simulación Sistema Actual Sistema Simulado parámetros entrada(t) salida(t) =?? El sistema simulado imita la operación del sistema actual sobre el tiempo. La historia artificial del sistema puede ser generado, observado y analizado. La escala de tiempo puede ser alterado según la necesidad. Las conclusiones acerca de las características del sistema actual pueden ser inferidos.

Cuando es apropiado simular No existe una completa formulación matemática del problema (líneas de espera, problemas nuevos). Cuando el sistema aún no existe (aviones, carreteras). Es necesario desarrollar experimentos, pero su ejecución en la realidad es difícil o imposible (armas, medicamentos, campañas de marketing) Se requiere cambiar el periodo de observación del experimento (cambio climático, migraciones, población). No se puede interrumpir la operación del sistema actual (plantas eléctricas, carreteras, hospitales).

Cuando NO es apropiado simular El desarrollo del modelo de simulación requiere mucho tiempo. El desarrollo del modelo es costoso comparado con sus beneficios. La simulación es imprecisa y no se puede medir su imprecisión. (El análisis de sensibilidad puede ayudar).

Conclusiones Los modelos se construyen para entender la realidad. Los modelos de simulación hacen uso intensivo del computador El tipo comportamiento de las variables determinan el comportamiento del sistema