Obtención del acero Escuela de Educación Técnica Nº1 La Unión, Ezeiza

Slides:



Advertisements
Presentaciones similares
Metales ferrosos I.
Advertisements

Proyecto II- Los metales y sus aleaciones
Soldadura al Arco Escuela Industrial Ernesto Bertelsen Temple.
TECNOLOGÍA DE MATERIALES
Producción del Hierro y el Acero
Materiales Metálicos Escuela Industrial Ernesto Bertelsen Temple.
PROCESO STICK /SMAW.
Tema 6. MATERIA-LES Y NUEVOS MATERIA-LES.
RECICLAJE Reciclaje de papel Reciclaje de chatarra
MATERIALES de Uso Técnico
Materiales pétreos aglomerantes
Prof. Ing. Roberto Bozzolo
¿DE DONDE PROCEDEN LOS MATERIALES?
Industria básica y extractiva
Los Metales Ferrosos Realizado por: Álvaro Rivas Orellana
18.4 METALURGIA EXTRACTIVA
MATERIALES DE USO TÉCNICO
Química U.1 Teoría atómica y reacción química
El proceso industrial de obtención de aluminio primario (tomado de Aluar) Proceso de Hall - Heroult (a partir de alúmina): consiste en la electrólisis.
PROCESOS DE LAMINACION
PROCESO DE REDUCCIÓN DIRECTA.
MATERIALES FÉRRICOS PAL - CURSO 2008/09 Eduardo García Marín
Arena prerevestida para fundición
MATERIALES METÁLICOS.
LOS HORNOS DE FUSIÓN DE METALES - LOS HORNOS DE REDUCCIÓN DE MINERALES
MATERIALES PARA INGENIERIA.
Proceso SMAW VALOR CURSO $
PRODUCCION DE METALES FERROSOS
PROPIEDADES QUIMICAS DEL ALUMINIO
EN TODOS LOS CASOS SE DISPONE UN ARROLLAMIENTO O DEVANADO PRIMARIO ENVOLVIENDO O EN LAS PROXIMIDADES DE LA CARGA METÁLICA (SI LA CARGA NO ES METÁLICA,
INDUSTRIA METALMECANICA
Es Un Combustible Fósil Sólido, Formado A Partir De Plantas Que Crecieron En Pantanos. Generaciones De Ellas Murieron Y Fueron Enterradas Bajo Capas Descompuestas.
FUNDICIONES.
ADICIONES MINERALES “Aditivos y adiciones del concreto; norma y
Procesos químicos industriales
PROCESO INDUSTRIAL DEL VIDRIO
TEMA 6 METALES FERROSOS.
Procesos Químicos Industriales
El Cobre y el Wolframio Cobre: 1.1 Proceso de Afino del Cobre
MATERIALES FERROSOS.
Unidad 9 Metales ferrosos.
-CINC -ESTAÑO -CROMO Alexander Grant Delgado 1ºBach Tecnología
El plomo y el magnesio Rosendo Manuel Cano Expósito.
LOS METALES Jorge Fernández Martín..
Materiales no férricos: Aluminio y Titanio.
MATERIALES METÁLICOS Tecnología.
Trabajo de moldeado y extracción de plásticos.
ALTOS HORNOS.
U. T. 1. LOS METALES 1. Propiedades. 2. Metales Férricos.
INSTITUTO TECNOLOGICO SUPERIOR DE TEPEACA
Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de.
MATERIALES: MATERIALES FERROSOS
ACEROS DE GRAN ELASTICIDAD
Paulina Tamayo Christian González Núñez Miguel Martinez Saul Martinez
LA MATERIA I am Joseph Black.
CONFORMADO DE MATERIALES EN CALIENTE Y EN FRIO
FABRICACIÓN SIN PÉRDIDA DE MASA PROCESOS DE FABRICACIÓN: FABRICACIÓN SIN PÉRDIDA DE MASA 1. Conformación por moldeado Tipos de moldeo. 2. Conformación.
PPTCANCBQMA03021V4 Cerámica, cemento, acero y polímeros sintéticos.
Los Metales Ferrosos Por: Adrián Marcos, Sergio Romero, Santiago Roldán y Ángel Criado.
TEMA 1. INTRODUCCIÓN A LOS METALES
METALES FÉRRICOS INTRODUCCIÓN A LOS METALES FÉRRICOS. SIDERURGIA
Fabricación de Hierro y Acero 2016
Y SUS DERIVADOS Tema 4. EL HIERRO Bloque I.
4. LA QUÍMICA EN LA SOCIEDAD
TRATAMIENTOS TÉRMICOS
FUNDICIONES.
Aleaciones.
METALES FÉRRICOS INTRODUCCIÓN A LOS METALES FÉRRICOS. SIDERURGIA
Metales ferrosos o férricos  Contienen hierro como elem. base. Además de contener otros elementos. Principales yacimientos en España. Magnetita 75 % pureza.
Transcripción de la presentación:

Obtención del acero Escuela de Educación Técnica Nº1 La Unión, Ezeiza Alumno: Mauro Adlerfligel Prof.: Juan Luis Musumeci

Obtención del acero

Principales Materias Primas para obtención del acero Mineral de hierro: El principal mineral de hierro es la hematita, el cual cuando es puro contiene 70% hierro. Cuando este oxido de hierro contiene agua se denomina limonita, y contiene 60% de hierro cuando es puro. La magnetita se halla con menos abundancia. La siderita se a empleado como mineral, pero debido a su pequeño contenido en hierro no se emplea con frecuencia en la actualidad. Las impurezas mas corriente del mineral de hierro son con sílice, titanio y fósforo. Los minerales que contienen las cantidades más pequeñas de estas impurezas son los que tienen mas valor. Una gran cantidad de sílice y titanio resulta perjudicial porque requiere cantidades extras de fundentes para escorificarlos en el horno alto, mientras que el fósforo y el azufre son perjudiciales debido a su efecto nocivo sobre el hierro y acero. Los minerales de hierro suecos están casi enteramente extensos de fósforos y azufre, lo cual explica la fama de los aceros y hierro suecos por su gran pureza. El mineral de estos depósitos naturales es hematita y contiene un 68% de hierro. La mayor parte del mineral de este distrito se presenta tan cerca de la superficie que puede extraer económicamente a cielo abierto. . Mineral de hierro

Principales Materias Primas para la obtención del acero. Coque: El calor requerido para fundir el mineral en los hornos altos se obtienen de la combustión del coque. El coque es el residuo que queda después de calentar ciertos carbones en ausencia de aire. Es un material duro quebradizo y poroso, que contiene de 85% a 90% de carbono, junto con alto de cenizas, azufre y fósforo. La resistencia mecánica, fragilidad e impurezas del coque dependen del carbón empleado y del método de fabricación utilizado. Existen dos maneras de hacer coque. En el procedimiento antiguo, en el cual las materias volátiles se destruían, se fabricaban en hornos de mufla sin aprovechar los subproductos destilados. En el proceso moderno se fabrica en retortas y se obtienen al mismo tiempo de los productos destilados muchos subproductos, tales como brea, amoniaco y benzol. Coque

Principales Materias para obtener el acero Chatarra: Solo los metales pueden ser utilizados varias veces. Otros materiales, tales como la madera, vidrio y hormigón constituyen u escombro cuándo han perdido su utilidad. En cambio, os metales procedentes de estructuras inservibles, tales como calderas, puentes, buques, automóviles, etc., se convierten en chatarra aprovechable. La necesidad de chatarras en la fabricación de metales y aleaciones férricos y no férricos es unos de los principales problemas que se le presentan al fabricante, particularmente en la industria del acero, en la que se necesitan grandes cantidades de chatarras clasificadas. Durante los periodos ordinarios de productividad no es seria la dificultad de obtener chatarra de buena calidad en suficiente cantidad; no obstante, constituye un factor importante en el funcionamiento cotidiano de una acería

Principales Materias Primas para la obtención del acero. La mayor parte de la chatarra llega como subproducto de los procesos de manipulación de metal, o bien de material anticuado, o pérdidas y producto de metal considerados como inútiles, comprendidos entre pequeñas piezas y acorazados. La chatarra requiere una clasificación apropiada con el fin de que resulten satisfactoria. La clasificación comprende la separación por tamaños, forma, clasificación de composición, etc; así como la separación completa de los metales no férricos y férricos, separación de los aceros aleados de los aceros al carbono, y la clasificación de calidades y composición de aceros aleados, esto es, al cromo tungsteno, etc.

Proceso productivo Para producir 1000 toneladas de arrabio, se necesitan 2000 toneladas de mineral de hierro, 800 toneladas de coque, 500 toneladas de piedra caliza y 4000 toneladas de aire caliente. Con la inyección de aire caliente a 550°C, se reduce el consumo de coque en un 70%. Los sangrados del horno se hacen cada 5 o 6 horas, y por cada tonelada de hierro se produce 1/2 de escoria.

Altos Hornos En general los altos hornos tienen un diámetro mayor a 8 m y llegan a tener una altura superior de los 60 m. Están revestidos de refractario de alta calidad. Los altos hornos pueden producir entre 800 y 1600 toneladas de arrabio cada 24 h. La caliza, el coque y el mineral de hierro se introducen por la parte superior del horno por medio de vagones que son volteados en una tolva.

Altos Hornos

Procesos de producción de hierro y acero

Horno Bessemer: Es un horno en forma de pera que está forrado con refractario de línea ácida o básica. El convertidor se carga con chatarra fría y se le vacía arrabio derretido, posteriormente se le inyecta aire a alta presión con lo que se eleva la temperatura por arriba del punto de fusión del hierro, haciendo que este hierva. Con lo anterior las impurezas son eliminadas y se obtiene acero de alta calidad. Este horno ha sido substituido por el BOF, el que a continuación se describe.

Horno Bessemer:

Horno Básico de Oxígeno (BOF) Es un horno muy parecido al Bessemer con la gran diferencia que a este horno en lugar de inyectar aire a presión se le inyecta oxígeno a presión, con lo que se eleva mucho más la temperatura que en el Bessemer y en un tiempo muy reducido. El nombre del horno se debe a que tiene un recubrimiento de refractario de la línea básica y a la inyección del oxígeno. La carga del horno está constituida por 75% de arrabio procedente del alto horno y el resto es chatarra y cal. La temperatura de operación del horno es superior a los 1650°C y es considerado como el sistema más eficiente para la producción de acero de alta calidad. Este horno fue inventado por Sir Henrry Bessemer a mediados de 1800, sólo que como en esa época la producción del oxígeno era cara se inició con la inyección de aire, con lo que surgió el convertidor Bessemer, el que ya fue descrito.

Horno Básico de Oxígeno (BOF)

Horno de Hogar Abierto o Crisol Un horno de este tipo puede contener entre 10 y 540 toneladas de metal en su interior. Tiene un fondo poco profundo y la flama da directamente sobre la carga, por lo que es considerado como un horno de reverbero. Su combustible puede ser gas, brea o petróleo, por lo regular estos hornos tienen chimeneas laterales las que además de expulsar los gases sirven para calentar al aire y al combustible, por lo que se consideran como hornos regenerativos. Los recubrimientos de los hornos de hogar abrierto por lo regular son de línea básica sin embargo existen también los de línea ácida ((ladrillos con sílice y paredes de arcilla). Las ventajas de una línea básica de refractario, sobre una ácida son que con la primera se pueden controlar o eliminar el fósforo, el azufre, el silicio, el magnesio y el carbono y con la línea ácida sólo se puede controlar al carbono. El costo de la línea básica es mayor que el de la ácida.

Horno de Hogar Abierto o Crisol

Horno de Arco Eléctrico Existen hornos de arco eléctrico que pueden contener hasta 270 toneladas de material fundido. Para fundir 115 toneladas se requieren aproximadamente tres horas y 50,000 kwh de potencia. También en estos hornos se inyecta oxígeno puro por medio de una lanza. Los hornos de arco eléctrico funcionan con tres electrodos de grafito los que pueden llegar a tener 760mm de diámetro y longitud de hasta 12m. La mayoría de los hornos operan a 40v y la corriente eléctrica es de 12,000 A. Estos equipos tienen un crisol o cuerpo de placa de acero forrado con refractario y su bóveda es de refractario también sostenida por un cincho de acero, por lo regular enfriado con agua. Para la carga del horno los electrodos y la bóveda se mueven dejando descubierto al crisol, en el que se deposita la carga por medio de una grúa viajera. Estos equipos son los más utilizados en industrias de tamaño mediano y pequeño, en donde la producción del acero es para un fin determinado, como varilla corrugada, aleaciones especiales, etc.

Horno de arco eléctrico

Colada Contínua Cuando se requiere un material de sección constante y en grandes cantidades se puede utilizar el método de la colada continua, el cuan consiste en colocar un molde con la forma que se requiere debajo de un crisol, el que con una válvula puede ir dosificando material fundido al molde. Por gravedad el material fundido pasa por el molde, el que está enfriado por un sistema de agua, al pasar el material fundido por le molde frío se convierte en pastoso y adquiere la forma del molde. Posteriormente el material es conformado con una serie de rodillos que al mismo tiempo lo arrastran hacia la parte exterior del sistema. Una vez conformado el material con la forma necesaria y con la longitud adecuada el material se corta y almacena. Por este medio se pueden fabricar perfiles, varillas y barras de diferentes secciones y láminas o placas de varios calibres y longitudes. La colada continua es un proceso muy eficaz y efectivo para la fabricación de varios tipos de materiales de uso comercial

Colada Continua

Colada Convencional Los moldes se hacen apisonando arenas apropiadas sobre un modelo colocado en el interior de una caja. La caja consiste simplemente en un recipiente formado por dos o mas elementos, que permite sacar el modelo. El modelo se retira y el espacio por él ocupado se llena con el metal fundido. Los modelos pueden ser de madera o metálicos; son reproducciones exactas de las piezas que se trata de fabricar, exceptuando que son ligeramente más grandes para compensar la contracción del metal durante su enfriamiento.