Cifrado matricial o cifrado Hill

Slides:



Advertisements
Presentaciones similares
el 1, el 4 y el 9 tres cuadrados perfectos autosuficientes
Advertisements

CIFRADO CON PLANTILLAS
Ejemplo de cifrado monoalfabético
Sus papeles cambian de forma alternativa
Ejemplo de cifrado monoalfabético
Ejemplo de cifrado monoalfabético
Cifrado de imágenes digitales: Método matricial
Matemática Financiera 1º ADEUtilización de la Función TIR en el cálculo del tanto efectivo 1 de 37 Cálculo de tantos efectivos Utilización de la función.
4. ANÁLISIS FACTORIAL Introducción Modelo factorial ortogonal
CRIPTOGRAFÍA MEDIANTE MATRICES INVERTIBLES
Sistema Numérico Binario
Curso de Seguridad Informática
Unidad de competencia II Estadística descriptiva:
MATRIZ INVERSA POR DETERMINANTES
FACTORIZACIÓN LU Bachilleres:
Los elementos invertibles de Z6 son 1 y 5
Valores y Vectores Propios
Estadística Administrativa I
MATRIZ INVERSA POR DETERMINANTES
Unidad 8 Capa de PRESENTACIÓN
Sistemas de Ecuaciones
Tema 1.- Aritmética. 1.-Usar el algoritmo de Euclides para calcular el máximo común divisor de a y b y expresarlo en función de a y b para: a) a= 56,
1.- Definiciones. 2.- Fórmulas. 3.- Esquema. 4.- Ejercicios.
Redes I Unidad 7.
Códigos Detectores y Correctores de Errores
Expresiones Algebraicas
MATRICES.
DETERMINANTES DE UNA MATRIZ
MATRICES Y DETERMINANTES
Aplicaciones de las matrices
Números enteros.
UPC MATRICES MA49 (EPE) Universidad Peruana de Ciencias Aplicadas
Sistemas de Ecuaciones lineales
MATRICES Concepto Se llama matriz de orden m x n a todo conjunto de elementos aij dispuestos en m líneas horizontales (filas) y n verticales (columnas)
Prof. Esteban Hernández
DPTO. MATEMÁTICAS - I.E.S. PABLO SERRANO
Programación Lineal Unidad 1 Parte 3.
Seguridad Informática y Criptografía Material Docente de Libre Distribución Ultima actualización: 02/03/04 Archivo con 13 diapositivas Jorge Ramió Aguirre.
MÉTODO DE ENCRIPTACIÓN BASADO EN EL ALGORITMO R.S.A
2º Bachillerato de Ciencias y Tecnología BC2A – BC2B Curso
Estructura de Datos II Equipo 4 Equipo 7 Acosta Montiel Miguel A.
Sistemas de numeración
Inversa de una matriz.
Sesión 12.2 Sistemas lineales y método de Gauss.
SEGURIDAD DE REDES CARRERA DE INGENIERÍA DE SISTEMAS Ing. Moisés Toapanta, MSc. Guayaquil, junio del 2014.
Planteos Recursivos Resolución de Problemas y Algoritmos
Tema 3.- MATRICES INVERTIBLES
¿Qué matemáticas están presentes en la aplicación de la computación en el ámbito científico? César Fernández R. Hipótesis cognitiva: La matemática que.
Sistema Numérico Binario Prof. Carlos Rodríguez Sánchez.
Seguridad Informática y Criptografía Material Docente de Libre Distribución Ultima actualización: 03/03/03 Archivo con 14 diapositivas Jorge Ramió Aguirre.
Seguridad Informática y Criptografía Material Docente de Libre Distribución Ultima actualización: 03/03/03 Archivo con 28 diapositivas Jorge Ramió Aguirre.
Integrantes : Eduardo Gutiérrez Droguett Yoshio Jujihara Astorga Eduardo Becerra Olivares Nicolás Ibarra Betanzo Johan Contreras Ramírez Profesor: Luis.
Matriz inversa Método Gauss Jordan.
Matrices rango de una matriz
Combinación y Permutación
Las fórmulas más usadas en excel
MATRICES Y DETERMINANTES
Firma Electrónica Eduardo Chiara Galván
MATRIZ INVERSA.
Matrices Pág. 1. Matrices Pág. 2 Se llama matriz traspuesta de A, y se representa por A t a la matriz que resulta de intercambiar las filas y las columnas.
MATRICES.
Matemática Básica (Ing.) 1 Sesión 12.1 Sistemas lineales y método de Gauss.
Guardando el secreto Protección de datos.
Ingeniería en Informática F UNDAMENTOS DE C OMPUTACIÓN B ACHILLERATO EN I NGENIERÍA I NFORMÁTICA L IC. C ARLOS H. G UTIÉRREZ L EÓN.
Electiva de Redes II – 2012-I Departamento de Ingeniería de Sistemas 1 Seguridad en Redes, Enfoque hacia Criptografía Miguel Jimeno, Ph.D. Departamento.
Criptografía. La criptografía (del griego κρύπτω krypto, «oculto», y γράφω griego graphos, «escribir», literalmente «escritura oculta») es el arte o arte.
MATRICES Y DETERMINANTES Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre de singular. Matrices.
Para generar una transmisión segura de datos, debemos contar con un canal que sea seguro, esto es debemos emplear técnicas de forma que los datos que.
 IMPARTIDA POR:  ING. NOE IBARRA ARREDONDO  21/NOV/2015 RIOVERDE, S.L.P. ALGEBRA LINEAL Orden de una Matriz Operaciones con Matrices Transformaciones.
Sistema Numérico Binario Prof. Carlos Ortiz Muñoz.
Transcripción de la presentación:

Cifrado matricial o cifrado Hill Lester S. Hill publica en 1929 su libro Cryptography in an Algebraic Alphabet, en el cual un bloque de texto claro se cifra a través de una operación con matrices. En su época no tuvo mucho éxito por la dificultad operacional (Se diseñó una máquina para este cifrado pero no pudo competir con máquinas como Enigma o Hagelin) Actualmente este sistema se puede implementar fácilmente en los ordenadores que tenemos a nuestro alcance. Criptografía como recurso para el aula de matemáticas. El arte de esconder

Originariamente, Hill trabajaba módulo 26 (usaba alfabeto inglés) Con el alfabeto de cifrado arbitrario Para cifrar un mensaje utilizaba el sistema lineal de ecuaciones (1): y1 = (8x1 + 6x2 + 9x3 + 5x4) mod 26 y2 = (6x1 + 9x2 + 5x3 + 10x4) mod 26 y3 = (5x1 + 8x2 + 4x3 + 9x4) mod 26 y4 = (10x1 + 6x2 + 11x3 + 4x4) mod 26 Nosotros usaremos un método generalizado (podemos seleccionar la matriz y Zn) Criptografía como recurso para el aula de matemáticas. El arte de esconder

Aprendemos a cifrar: Hill Texto claro: Se cifra en bloques de d elementos: X = {x1, x2,…., xd} Texto cifrado: El resultado de cifrar cada bloque: Y = {y1, y2,…., yd} Clave: Una matriz Mdxd con inversa en Z30 Cifrado: M.X = Y Descifrado: X = M-1Y Vamos a cifrar el mensaje: X: es interesante conocer métodos de cifrado Primer paso: Se elige un entero d, que determina bloques de d elementos y que trataremos como vectores de dimensión igual a d. d = 4 Es*i nter esan te*c onoc er*m etod os*d e*ci frad o ¿Qué hago con el último bloque? *** Criptografía como recurso para el aula de matemáticas. El arte de esconder

Aprendemos a cifrar: Hill Segundo paso: Se elige una matriz cuadrada M de orden d que será la clave a utilizar. Los elementos de esta matriz M serán números enteros entre 0 y 29, además la matriz debe ser inversible en Z30. ¿por qué? ¿Estoy seguro/a de que M tiene inversa en Z30? ¿Cómo lo puedo saber? ¿Cuál es el determinante de M ? Criptografía como recurso para el aula de matemáticas. El arte de esconder

Inversa de una matriz módulo 30 Criptografía como recurso para el aula de matemáticas. El arte de esconder

Aprendemos a cifrar: Hill Tercer Paso: Expresamos los caracteres en números Obtenemos 11 bloques Criptografía como recurso para el aula de matemáticas. El arte de esconder

Aprendemos a cifrar: Hill A cada bloque le aplicamos la transformación MXi = Ci Para el primer bloque Haciendo lo mismo para todos los bloques: jtvdtinzbyszqlrsncqlwutncj*hmgcdm*ppnmptarm* Criptografía como recurso para el aula de matemáticas. El arte de esconder

Cifrado de Hill ¿Cualquier matriz sirve para cifrar con este método? La matriz M será siempre cuadrada, y sus elementos serán nuestra clave secreta. Son el punto más importante del criptosistema, donde reside su seguridad. Los elementos serán números enteros que formen parte del conjunto Zn en el que se trabaja Para recordar la matriz clave se pueden asignar letras. Esto es muy útil para el intercambio de claves Por ejemplo una clave si trabajamos con un alfabeto de 29 letras puede ser: Criptografía como recurso para el aula de matemáticas. El arte de esconder

Cifrado de Hill La matriz K no deberá ser singular, es decir, tendrá inversa para poder descifrar Además como estamos trabajando en Zn la matriz M de cifrado debe tener determinante no nulo en este conjunto: |M| mod n  0 Como trabajamos con números comprendidos entre 0 y n-1 no nos servirán los números fraccionarios. Al calcular la inversa de M dividimos por su determinante entonces para que una matriz M sea buena clave se cumplirá que El valor de este inverso no siempre existe, la condición necesaria para su existencia es que |M| y el módulo n sean primos entre sí MCD( |M|, n) = 1 Criptografía como recurso para el aula de matemáticas. El arte de esconder

Descifrado de Hill Descifra el mensaje z c r d , a . s t ñ m k q j t g cifrado con la matriz Pasamos a números z c r d , a . s t ñ m k q j t g 2 18 3 29 0 28 19 20 14 12 10 17 9 20 6 Separamos en bloques de 4 26, 2, 18, 3 29, 0, 28, 19 20, 14, 12, 10 17, 9, 20, 6 Aplicamos la transformación (M-1.Y) a cada bloque (módulo 30) Criptografía como recurso para el aula de matemáticas. El arte de esconder

Descifrado de Hill Aplicamos la transformación( M-1.Y) a cada bloque (módulo 30) hoy* es*m ierc oles Criptografía como recurso para el aula de matemáticas. El arte de esconder

Atacando el cifrado de Hill En la matriz clave está la seguridad del sistema. no todas las matrices sirven como clave en Zn En Z2 sólo hay 6 matrices válidas como clave. Se puede probar con cada una de ellas hasta obtener un mensaje claro En Z3 hay 48 matrices válidas como clave. Es un poco más complicado el ataque pero con un ordenador será rápido En Z27, tendremos 274 = 531.441 matrices distintas de orden 2. Si se descartan las matrices en las que el determinante es igual a cero o bien tienen factor común con el módulo 27, el número de matrices válidas se reduce a 314.928. Criptografía como recurso para el aula de matemáticas. El arte de esconder

Atacando el cifrado de Hill Para aumentar la seguridad de la clave, se puede trabajar con un módulo primo, este caso prácticamente sólo se eliminan matrices cuyo determinante sea cero. por ej: en Z37 con un alfabeto de letras más los dígitos del 0 al 9, el número de matrices 2x2 crece hasta 1.874.161 y más de 1.800.000 son claves válidas. El método es inmune al análisis de frecuencia; la misma letra en diferentes bloques se cifra de diferente manera ¿ Podremos hacer un análisis de PARES de letras?. Hay 26x26 = 676 pares de letras, son bastantes pero es manejable porque unos pares destacan bastante en su frecuencia de aparición sobre los otros. El par de letras más frecuente en el mensaje cifrado corresponde a DE y entonces unas cuantas operaciones con matrices nos dan la matriz clave Criptografía como recurso para el aula de matemáticas. El arte de esconder

Atacando el cifrado de Hill Si se usan los 256 caracteres posibles en un fichero de tipo binario habrá 256x256=65536 combinaciones, bastante más difícil para el criptoanalista, Si analizamos palabras de 3 letras, ahora tenemos 26x26x26=17576 casos, son bastantes pero aún tenemos estadísticas para combinaciones de tres letras en castellano. Con bloques de tamaño 10, el número de bloques posibles es 2610 es decir aproximadamente 140.000.000.000.000, un análisis de frecuencias de bloques de 10 caracteres es muy improbable por no decir imposible. A pesar de esto el sistema no es seguro, se puede hacer un ataque (método de Gauss Jordan) con texto claro y encontrar la matriz clave El método se basa en la linealidad del cifrado ya que en el texto claro o en el criptograma aparecen los vectores unitarios Criptografía como recurso para el aula de matemáticas. El arte de esconder

Método de Gauss Jordan para ataque a Hill Si se conoce el mensaje original y el criptograma A L R G T O D S E B 11 18 6 20 15 3 19 1 4 Y K N C U W F P I J 25 10 13 2 21 23 5 16 8 9 Se escribe una matriz con los elementos del texto en claro y del criptograma Se realizan operaciones elementales en esta matriz hasta conseguir columnas de ceros y unos Si es necesario se pueden intercambiar filas Criptografía como recurso para el aula de matemáticas. El arte de esconder

Método de Gauss Jordan para ataque a Hill Para esta matriz el proceso es: En la matriz izquierda estaba el texto claro, la parte derecha de esta última matriz con vectores unitarios será la traspuesta de la clave Criptografía como recurso para el aula de matemáticas. El arte de esconder

Ventajas del Cifrado de Hill Los algoritmos simétricos son generalmente más rápidos que los sistemas de clave-pública. El método es inmune al análisis de frecuencia de letras, a diferencia de los sistemas monoalfabéticos. Para un tamaño de clave grande y sin método para conseguir el texto original y codificado se vuelve "seguro“. Si n=27 el espacio de claves aumenta de forma espectacular (comparable con DES) Criptografía como recurso para el aula de matemáticas. El arte de esconder

Inconvenientes del Cifrado de Hill La clave debe ser distribuida en secreto. Es tan valiosa como todos los mensajes a encriptar. Si la clave se ve comprometida (robada, averiguada, extorsionada, sobornada, ....) todos los textos podrán ser desencriptados y se puede suplantar la personalidad del emisor para enviar falsos mensajes. La longitud del texto cifrado es el mismo que la del texto original. La seguridad depende básicamente de saber o no el tamaño de la matriz elegida. El sistema se convierte muy débil ante el conocimiento de una cadena de texto original y su correspondiente texto codificado.   Criptografía como recurso para el aula de matemáticas. El arte de esconder