Semiconductor tipo P y N Unión P-N en estado de equilibrio

Slides:



Advertisements
Presentaciones similares
Enlace metálico Semiconductores
Advertisements

LECCIÓN 2 Estadística de Electrones y Huecos en Semiconductores
Introducción a la Electrónica de Dispositivos
I.E.S.MIGUEL HERNÁNDEZ – DEPARTAMENTO FAMILIA PROFESIONAL DE ELECTRICIDAD 1.
Unidad 1: Fundamentos de Electrónica
UNIDAD 1: INTRODUCCIÓN A LA ELECTRÓNICA Y TEORIA DE DIODOS
Unidad 1: Introducción a la Electrónica y Semiconductores
JESÙS JAVIER LEYVA GONZÀLEZ
Silicio Semiconductor.
Tema 2: Semiconductores
Diodo + - V I. Diodo + - V I 0ºK Introducción a la física de estado sólido: semiconductores Semiconductor intrínseco Si Si 0ºK Si Si: silicio Grupo.
Materiales Tipo P y Tipo N
Electrónica Análoga I Prof. Dr. Gustavo Patiño MJ
UNIDAD N° 1: DISPOSITIVOS SEMICONDUCTORES: -SEMICONDUCTORES
Campo Eléctrico E El átomo está compuesto de núcleo (protones y neutrones) y electrones. Entre los electrones y protones se ejercen fuerzas de atracción.
Instituto Tecnológico de Saltillo FISICA IV ING
Introducción a la Electrónica
Introducción a la Electrónica de Dispositivos
MATERIALES UTILIZADOS EN LAS NUEVAS TECNOLOGIAS
Curso de Semiconductores reunión 5
Semiconductores.
Profesor en Mecánica Automotriz
Dispositivos Electrónicos y Fotónicos Área de Tecnología Electrónica
Dispositivos Electrónicos y Fotónicos Área de Tecnología Electrónica
Cristalino: Que está constituido por átomos apilados con un patrón regular y repetitivo. Unión metálica es aquella en que los electrones de valencia se.
SEMICONDUCTORES.
SEMICONDUCTORES Semiconductor
De acuerdo a su conductividad eléctrica tenemos:
Semiconductores y unión p-n
Capítulo 1 Física de los Semiconductores
CAMPO ELECTRICO EN UN SEMICONDUCTOR
DIODO TUNEL. CONSTRUCCION INTRODUCCION Para producir una ruptura zener o una descarga de avalancha, se debe dar energía suficiente a los.
Conducción Eléctrica La corriente eléctrica es debida al arrastre de electrones en presencia de un campo E. El flujo de corriente depende de: La Intensidad.
INSTITUTO TECNOLOGICO DE SALTILLO
PLACAS O CELDAS SOLARES.
Estructura de la Materia Materiales Conductores Materiales Semiconductores y Materiales Dieléctricos Prof. Gustavo Patiño. M.Sc. Ph.D MJ
TEMA 1: SEMICONDUCTORES Mª Dolores Borrás Talavera.
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam- 14/junio/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Juan Nicolas Casas Marquez fsc08Juan 10/junio/2015.
Universidad Nacional de Colombia
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 BANDAS DE ENERGÍA Profesor: Jaime Villalobos Velasco.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Andrés Rey Caballero.
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 Profesor: Jaime Villalobos Velasco Estudiante:
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Tatiana Andrea Gracia Prada -fsc11Tatiana
Luis Rodríguez Nelson Tovar Daniel Zorrilla Juan Casas
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
UN Oscar Alejandro Olaya Sánchez -fsc24Oscar- 19/06/2015.
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si UN Lizeth Andrea Anzola Fernández -fsc01Lizeth
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
1 Diodos Unión P N.
UN Oscar Alejandro Olaya Sánchez -fsc24Oscar- 19/06/2015.
1.
UN David Antonio Burbano Lavao -fsc05David-.  Una ALEACIÓN de materiales semiconductores es una agregación de diferentes estructuras cristalinas para.
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES
ELECTRÓNICA ANÁLOGA Y DE POTENCIA
Los dispositivos semiconductores
Semiconductores Extrínsecos Tipo N y Tipo P
Conceptos básicos Efecto fotovoltaico: conversión de luz en electricidad. Efecto fotovoltaico: conversión de luz en electricidad. Materia: constituida.
Tema 2: Fundamentos de Semiconductores
SEMICONDUCTORES Alumno : Rodríguez Sánchez Eduardo Francisco Carrera : Ingeniería de Sistemas Ciclo : IV Profesor : Mendoza Nolorbe Juan.
SEMICONDUCTORES INTRÍNSECOS Y DOPADOS Alan Arroyo Alvarez Física Electrónica Ingeniería de Sistemas Convalidación.
SEMICONDUCTORES INTRÍNSECOS Y DOPADOS HELMER EDUARDO CALLE SANCHEZ.
Tema : El Diodo y su Aplicación Diodo Ideal y Real Semiconductores.
Transcripción de la presentación:

Semiconductor tipo P y N Unión P-N en estado de equilibrio Unidad II Unión P N Semiconductor tipo P y N Unión P-N en estado de equilibrio Potencial de contacto

Unión P-N Se conoce como unión P-N a la configuración fundamental de los componentes electrónicos conocidos como semiconductores principalmente diodos y transistores y estos están formados de dos cristales de silicio i de germanio según su naturaleza P y N según su composición del nivel atómico.

¿Que es un semiconductor?

Semiconductor tipo P Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos). Cuando el material dopante es añadido , éste libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos.

Impurezas del grupo III de la tabla periódica Si Al - + Al: aluminio Impurezas del grupo III de la tabla periódica Es necesaria muy poca energía para ionizar el átomo de Al

Los portadores mayoritarios de carga en un semiconductor tipo P son Al - Impurezas grupo III Átomos de impurezas ionizados Huecos libres Los portadores mayoritarios de carga en un semiconductor tipo P son Huecos. Actúan como portadores de carga positiva.

Estructura cristalina compuesta por átomos de silicio (Si) Estructura cristalina compuesta por átomos de silicio (Si). que forman, una celosía, dopada. ahora con átomos de galio (Ga) para formar un semiconductor “extrínseco”. Como se puede observar en. la. ilustración, los átomos de silicio (con cuatro electrones en. la. última órbita o banda de valencia) se unen formando. enlaces covalente con los átomos de galio (con tres. electrones en su banda de valencia). En esas condiciones. quedará un hueco con defecto de electrones en la. estructura. cristalina de silicio, convirtiéndolo en un. semiconductor tipo-P (positivo) provocado por el defecto de electrones en la estructura.  

Semiconductor tipo N

Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativas o electrones). El propósito del dopaje tipo n es el de producir abundancia de electrones portadores en el material.

Si Sb Sb: antimonio Impurezas del grupo V de la tabla periódica Es necesaria muy poca energía para ionizar el átomo de Sb A temperatura ambiente todos los átomos de impurezas se encuentran ionizados

Los portadores mayoritarios de carga en un semiconductor tipo N son Sb Impurezas grupo V 300ºK + Electrones libres Átomos de impurezas ionizados Los portadores mayoritarios de carga en un semiconductor tipo N son electrones libres

Estructura cristalina compuesta por átomos de silicio (Si) formando una celosía. Como se puede observar, esta estructura se ha dopado añadiendo átomos de antimonio (Sb) para crear un material semiconductor “extrínseco”. Los átomos de silicio (con cuatro electrones en la última órbita o banda de valencia) se unen formando enlaces covalentes con los átomos de antimonio (con cinco en su última órbita banda de valencia). En esa unión quedará un electrón libre dentro de la estructura cristalina del silicio por cada átomo de antimonio que se haya añadido. De esa forma el cristal. de silicio se convierte en material semiconductor tipo-N (negativo) debido al exceso electrones libres con cargas negativas presentes en esa estructura.

Unión P-N en equilibrio Semiconductor tipo P + Semiconductor tipo N

Una unión p-n se encuentra en equilibrio termodinámico cuando se encuentra a una temperatura uniforme y no actúan sobre ella factores externos que aporten energía. En este caso las corrientes de electrones y huecos deben anularse en cada punto del semiconductor y, desde un punto de vista termodinámico, el nivel de Fermi ha de ser el mismo para ambos tipos de portadores. Con ello tendremos:

Conclusiones Unión P-N Aplicando tensión inversa no hay conducción de corriente Al aplicar tensión directa en la unión es posible la circulación de corriente eléctrica P N DIODO SEMICONDUCTOR

Potencial de contacto Es ocasionado por el salto de los electrones libres que se encuentran cerca de la juntura metalúrgica provocado en el bloque N hacia los iones positivos que se encuentran en el bloque P. Este salto se lleva a cabo sin necesidad de aplicar energía eléctrica. El potencial de contacto se puede considerar despreciable para fines prácticos.

En la unión P-N en equilibrio, es la diferencia de potencial existente en la zona de transición. Depende de la concentración de impurezas aceptoras (NA), donadoras (ND) y de la concentración intrínseca (ni), y viene dada por: en la que VT es el potencial de temperatura , donde  k es la constante de Boltzmann (1,38066·10-23 J/K), T la temperatura absoluta y qe la carga del electrón. De este modo, a 300 K, VT  vale 26 mV.