La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Problema 1 Se ha purificado una enzima a partir de hígado de rata. En la purificación se partió de 500 ml de extracto crudo que contenía 2 g de proteína.

Presentaciones similares


Presentación del tema: "Problema 1 Se ha purificado una enzima a partir de hígado de rata. En la purificación se partió de 500 ml de extracto crudo que contenía 2 g de proteína."— Transcripción de la presentación:

1 Problema 1 Se ha purificado una enzima a partir de hígado de rata. En la purificación se partió de 500 ml de extracto crudo que contenía 2 g de proteína. 50 µl de ese extracto crudo catalizaban, en condiciones óptimas de ensayo, la producción de 1 nmol de producto en 1 segundo. Tras varios pasos de purificación se obtuvieron 2 ml de una preparación de enzima pura que contenía 3 mg de proteína por mililitro y presentaba una actividad total de 120 U. a) Calcular la concentración de la enzima en el extracto crudo en U/ml y katales/ml. b) Determinar la actividad específica, en U/mg proteína en el extracto crudo. c) Calcular la recuperación del proceso de purificación y el número de veces que se ha purificado la enzima.

2 Problema 1 1 nmol = 0,001 µmoles/seg x 60 seg/min = 0,06 µmoles/min = 0,06 U en 50 µl. 0,06 U/50 µl x 1000 µl/ml = 1,2 U/ml. 1 katal = 1 mol P/seg = 106 µmoles/seg x 60 seg/min = 6x107 U => 1,2 U/6x107 U/katal = 2x10-8 katales = 0,02 µkatales/ml. b) Actividad total E.C.= 1,2 U/ml x 500 ml = 600 U Proteína total E.C.= 2 g = mg Actividad específica = 600 U/2.000 mg = 0,3 U/mg proteína. c) Recuperación = AT final/AT inicial (x100) = = 120 U / 600 U (x100) = 0,2 (x100) = 20% Purificación = AE final / AE inicial = = 20 U/mg / 0,3 U/mg = 66,7 veces Proteína final = 3 mg/ml x 2 ml = 6 mg AT final = 120 U AE final = 120 U/6 mg = 20 U/mg

3 Problema 2 S = ß-cetoácido 1 ml de mezcla de reacción vo [cetoácido]
(µmoles CO2 /2min) (M) 0,588 2,500 x 10-3 0,500 1,000 x 10-3 0,417 0,714 x 10-3 0,370 0,526 x 10-3 0,252 0,250 x 10-3 A partir de estos datos calcular Vmáx y KM de esta reacción. ¡Cuidado! 1/vo /[S] (min/µmoles) mM-1 3,4 0,4 4,0 1,0 4,8 1,43 5,4 1,9 7,9 4,0

4 Problema 2 La KM y la Vmáx las obtenemos de la representación de dobles inversos de Lineweaver-Burk. Regresión lineal y = ax + b r2 = 0,996 a = 1,27 = pendiente = KM/Vmáx b = 2,885 = corte en Y Corte en X = -(a/b) 8,0 1/vo (min/µmol ) 6,0 Constantes: -1/KM = -2,3 mM-1 => KM = 0,44 mM 1/Vmáx = 2,9 min/µmol => Vmáx = 0,346 µmoles min-1 4,0 1/Vmáx = 2,9 2,0 -1/KM = -2,3 1/[S] (mM-1) Cuestiones: ¿Cuántas unidades de enzima hay en la mezcla de reacción? Cuál es la concentración de la enzima en dicha mezcla? ¿Podemos calcular la actividad específica de la enzima? Y la Kcat (o número de recambio)?

5 Problema 11 Un extracto crudo enzimático contiene 20 mg de proteína/ml. 20 µl de ese extracto crudo catalizan la producción de 3 µmoles de producto en 1 min, en condiciones óptimas de trabajo. Calcular: La concentración de la enzima en el extracto crudo en U/ml. La actividad específica de esta enzima en el extracto en U/mg de proteína. La actividad total del extracto si tenemos 100 ml del mismo. Los 20 µl de extracto crudo contienen 3 U. [Enzima] = 3U/20µl = 3U/0.02 ml = 150 U/ml A.E. = [E] (U/ml) / [proteína] (mg/ml) = 150 U ml-1 / 20 mg ml-1 = 7,5 U/mg A.T. = 150 U/ml x 100 ml = U

6 Problema 12 Glutamina sintetasa de Anabaena cylindrica PM = 600 kDa
Extracto crudo Preparación purificada Proteína mg 4 mg A.T U 37,5 U Calcular: Recuperación del proceso de purificación Número de veces que se ha purificado la enzima. Número de recambio A.T. (pura) ,5 Recuperación = x 100 = x 100 = 20% A.T. (E.C.) A.E. (pura) ,5 U / 4 mg Factor de purificación = = = 211,7 A.E. (E.C.) U / 4200 mg A.T. (pura) ,5 µmoles S min-1 Nº de recambio = = = 5625 min-1 nº moles E ,67 x 10-3 µmoles de E 1 mol E pesa g => 1 µmol pesa 600 mg => 4 mg E = 6,67 x 10-3 µmoles de E

7 Problema 7 Dos inhibidores diferentes. [I] = 1,5 mM [S] v v’a v’b
(mM) (µmol l-1 min-1) (µmol l-1 min-1) (µmol l-1 min-1) 0,2 1,67 0, ,83 0,4 2,86 1, ,43 0,8 4,44 2, ,22 1,6 6,15 3, ,08 3,2 7,62 5, ,81 Decir qué tipo de inhibidor es cada uno y determinar todos los parámetros cinéticos.

8 Problema 7 La KM y la Vmáx las obtenemos de la representación de dobles inversos. a: competitivo b: no competitivo [Ia] = 1,5 mM V’máx= 10 µmoles min-1 ml-1 K’M= 3 mM 1,0 0,5 1/v (µmol -1 l min) 0,1 -0,33 0,2 1/[S] (mM-1) [Ib] = 1,5 mM V’máx= 5 µmoles min-1 ml-1 K’M= 1 mM [I] = 0 Vmáx= 10 µmoles min-1 ml-1 KM= 1 mM Cálculo de Ki: Kia K’M= KM (1 + [I]/Kia); 3 mM = 1 mM (1 + 1,5 mM/Kia); Kia = 0,75 mM Kib V’máx= Vmáx / (1 + [I]/Kib) 5 µmoles min-1 l-1 = 10 µmoles min-1 l-1 /(1 + 1,5 mM/Kib) => Kib = 1,5 mM

9 Problema 6 Grado de inhibición
KM = 75 µM. Cuando [S]0 = 50 mM consume el 30% en 15 min. a) Calcular Vmáx [S]0 50 mM >>> KM (0,075 mM) => v = Vmáx 0,3 x 50 mM mM Vmáx = = = 1 mM min-1 15 min min 30% En presencia de un inhibidor ([I] = 50 µM) la representación tiene la misma pendiente pero la ordenada en el origen es el doble. b) ¿Qué tipo de inhibición se ha producido? Calcular Ki El comportamiento corresponde a un inhibidor incompetitivo. Vmáx Vmáx V’máx = = (1+[I]/Ki) 1+[I]/Ki = 2 => [I]/Ki = 1 => [I] = Ki = 50 µM

10 Problema 6 c) Calcular el grado de inhibición (i) cuando el ensayo se hace a [S] = 150 µM, en presencia de 100 µM del inhibidor anterior. vi Grado de inhibición: i = 1 - v Vmáx [S] v = = 0,667 mM min-1 KM + [S] vi = = 0,285 mM min-1 KM + [S] (1+[I]/Ki) 0,285 mM min-1 i = = 0,57 = 57% 0,667 mM min-1

11 Problema 10 Muermasa Representación dobles inversos:
X= 0 => Y = 0,8 (µM/min)-1 Y= 0 => X = -0,02 (µM)-1 Se ensayan dos inhibidores: muermirulina y ß-muermol En ambos casos el corte en Y= 1,6 (µM/min)-1 La pendiente: mßm= 40 min mmr= 80 min a) ¿Cuáles son la KM y Vmáx de la reacción sin inhibidor? KM = -(1/-0,02) (µM)-1 = 50 µM Vmáx = 1/0,8 (µM/min)-1 = 1,25 µM/min

12 Problema 10 b) ¿Qué tipo de inhibidores son el ß-muermol y la muermirulina? ß-muermol: V’máx = 1/1,6 (µM/min)-1 = 0,625 µM min-1 m = 40 min = KM/Vmáx => K’M = 40 min x 0,625 µM min-1 = 25 µM Es un inhibidor incompetitivo ßmuermirulina: V’máx = 0,625 µM min-1 m = 80 min = KM/Vmáx => K’M = 80 min x 0,625 µM min-1 = 50 µM = KM Es un inhibidor no competitivo c) Si [I] = 5 mM, determinar Ki para ambos inhibidores. Vmáx V’máx = (1+[I]/Ki) V’máx = 1/2 Vmáx => (1+[I]/Ki) = 2 => [I] = Ki = 5 mM

13 Problema 10 d) Calcular el grado de inhibición a [S] = 0,1 mM para el ß-muermol. [I] = 5 mM Calculamos con la ecuación de Michaelis-Menten la vo y la v'o en estas condiciones: vo = 0,83 µM min-1 v'o = 0,5 µM min-1 i = 1-(v'o / vo)= 1-(0,5/0,83) = 1-0,6 = 0,4 (40%)

14 V’máx = Vmáx/2 => [I] = Ki => Ki = 1mM
Problema 18 Enzima (PM 50 kDa) 3 centros activos. A. por centro: min-1 KM = 1 mM 1,5 ml preparación pura con 2 mg proteína/ml Se ensayan 40 µl en 10 ml con [S]= 0,1M y 1 mM inhibidor NC y se obtiene una vi = 2,4 mM / min. a) Determinar Ki e i (grado de inhibición) de la reacción. 1) Calculamos la Vmáx a partir de los datos de la enzima: U x 104 U µmol x 104 A.E. = = = = mg proteína 5x104 g/mol x 10-6 mol/µmol x 103 mg/g = 600 U / mg proteína Activ. ensayo: A.E. x [E] (mg/ml) x v = 600 U/mg x 2 mg/ml x 0,04 ml= 48 U Vmáx = 48 µmoles/min = 4,8 mM/min (ya que el ensayo se hace en 10 ml) Como [S] >>> KM => vo = Vmáx = 4,8 mM/min En presencia del Inhibidor NC => v’o= V’máx = 2,4 mM/min V’máx = Vmáx/2 => [I] = Ki => Ki = 1mM i = 1- (v’/v) = 1 - (1/2) = 0,5 (50%)

15 Problema 18 El tiempo de un ciclo catalítico es la inversa del N.R.
b) Se partió de 5 L de E.C. con 0,6 U/ml y 1 mg prot/ml. Calcular la recuperación y el número de veces que se ha purificado la enzima. A.T. E.C. = 0,6 U/mL x mL = U; A.E. E.C. = 0,6 U/mg A.T. E pura = 600 U/mg x 3 mg = U; A.E. E pura = 600 U/mg Recuperación = A.T. final/A.T. inic. (x100) = U /3.000 U (x100) = 60% Purificación = A.E. final/A.E. inic. = 600 U/mg / 0,6 U/mg = 1000 veces c) Determinar el tiempo de un ciclo catalítico. N.R. = A.C.C. x nº centros = min-1 x 3 centros = min-1. Tiempo ciclo catalítico = 1/N.R. = 1/ min-1 = 3,33 x 10-5 min = 2 ms El tiempo de un ciclo catalítico es la inversa del N.R. (¡¡¡ no de la actividad por centro!!! ) de la enzima.

16 Cuestiones de examen Indicar qué ocurre con la constante de Michaelis-Menten y la velocidad máxima en el ensayo de una enzima en las siguientes condiciones: a) Se duplica la concentración de enzima. La KM no se altera. La KM es una constante de la enzima (a una temperatura dada) para un sustrato específico y no depende de ningún otro factor. Al duplicar la cantidad de enzima, duplicaremos la velocidad máxima en el ensayo. Vmáx = k2 [Et] b) Se añade un inhibidor no competitivo a una concentración igual a dos veces la Ki. La KM no se altera en presencia de un inhibidor no competitivo. La Vmáx disminuiría hasta 1/3 de su valor en ausencia del inhibidor. Vmáx Vmáx V´máx = = = 1/3 Vmáx 1 + ([I]/Ki) (2Ki /Ki)

17 c) Se añade un inhibidor acompetitivo a una concentración equivalente a la Ki.
Tanto KM como Vmáx disminuyen de la misma forma en presencia de un inhibidor acompetitivo. La disminución de ambos parámetros los llevaría a 1/2 de su valor en ausencia del inhibidor. 1 + ([I]/Ki) = 1 + (Ki/Ki) = 2 K'M = KM / (1 + ([I]/Ki)) = KM/2 V´máx = Vmáx / (1 + ([I]/Ki)) = Vmáx/2

18 Problema de examen Se está caracterizando una enzima recién purificada. Para determinar su peso molecular se ha hecho una electroforesis en SDS, siendo la movilidad relativa de la única banda igual a 0,51. Las movilidades relativas del patrón de pesos moleculares se resume en la siguiente tabla: Masa molecular (kDa) Rf 0,29 0,45 0,72 0,9 La concentración de la enzima en el extracto crudo es de 4,2 mg ml-1. Se toman 50 µl de dicho extracto y se ensayan en 1,5 ml de mezcla de reacción, resultando la siguiente tabla: [Sustrato] (µM) vo (µmoles min-1 ml-1) 6,26 10,00 13,33 16,66 Calcular la KM y la kcat (número de recambio) de la enzima.

19 Problema de examen La KM la obtenemos de la representación de dobles inversos: 0,16 Corte en Y= 1/Vmáx= 0,045 => Vmáx= 22 µmoles min-1 ml-1 1/v (µmoles-1 min ml) 0,08 Corte en X= -1/KM= -0,20 => KM= 5,0 µM 0,045 -0,20 -0,2 -0, ,1 0,2 0,3 0,4 0,5 1/[S] (µM-1)

20 Rf de la proteína problema
Problema de examen El PM de la enzima, necesario para calcular el número de recambio, lo obtenemos de la representación de los logaritmos de pesos moleculares frente a la movilidad. 2,0 1,5 1,0 0,5 ,25 0, , ,0 Log PM = 1,54 => PM = Rf de la proteína problema Rf log PM

21 Tiempo de un ciclo catalítico = 1 / N.R. = 1,82 x 10-4 min = 10,9 ms
Problema de examen Para calcular la kcat (N.R.), tenemos que conocer la actividad específica: Número de unidades en el ensayo = 22 µmoles min-1 ml-1 x 1,5 ml = 33 U. 33 U / 0,05 ml = 660 U/ml ¡¡50 µl es el volumen ensayado!! A.E. = 660 U ml-1 / 4,2 mg ml-1 = 157 U / mg de proteína. 1 mol de enzima pesa g => 1 µmol pesa 35 mg => => 1 mg = 0,0286 µmoles de enzima. 157 µmoles S min-1 N.R. = = 5490 min-1 0,0286 µmoles E Tiempo de un ciclo catalítico = 1 / N.R. = 1,82 x 10-4 min = 10,9 ms

22 Problema 24 Se ha conseguido purificar una enzima 2000 veces, obteniéndose al final del proceso 2 ml de preparación enzimática pura, que contiene 3 mg de proteína. Se partió de un extracto crudo de ml de volumen, que tenía una actividad enzimática de 5 U/ml y una concentración de proteína de 10 mg/ml. El PM de la enzima es y presenta tres sitios activos. Se toman 20 µl de esta preparación y se ensayan a una [S] = 5 x 10-5 M. La KM de la enzima para su sustrato específico es de 10-5 M. a) Suponiendo que la enzima sigue una cinética hiperbólica, calcular vo en estas condiciones. Necesitamos saber cuál es la actividad enzimática en esos 20 µl de preparación pura que ensayamos. Podemos calcular la actividad específica de la preparación a partir del factor de purificación y los datos del extracto crudo: Purificación = A.E.F / A.E.I = A.E.F / 0,5 U mg-1 = => A.E.F = U / mg

23 Problema 24 Como tenemos 3 mg de enzima pura, la A.T.F = U. Si las U las tenemos en 2 ml, en 20 µl que hemos ensayado tendremos 30 U. Luego la Vmáx en nuestro ensayo será de 30 µmoles / min. Vmáx [S] 30 µmoles/min 5 x 10-5 M vo = = = 25 µmoles/min KM + [S] M + 5 x 10-5 M b) ¿Qué concentración de inhibidor competitivo (Ki = 2x10-5M) será necesaria para conseguir el 40% de inhibición de la actividad enzimática? Si G.I. = 40% => v'o = 60% vo = 0,6 x 25 µmoles/min = 15 µmoles/min Vmáx [S] µmoles/min 5 x 10-5 M v'o = 15 µmoles/min = = => K'M = 5x10-5 M K'M + [S] K'M + 5 x 10-5 M K'M = 5x10-5 M = KM (1 + ([I] / Ki)) = 10-5 M (1 + ([I] / 2x10-5 M)) => [I] = 8 x10-5 M

24 Número de veces = 4,8x10-4 M / 8x10-5 M = 6 veces
Problema 24 c) ¿Cuántas veces habría que aumentar la concentración de inhibidor para doblar el porcentaje de inhibición? Si G.I. = 80% => v'o = 20% vo = 0,2 x 25 µmoles/min = 5 µmoles/min Vmáx [S] µmoles/min 5 x 10-5 M v'o = 5 µmoles/min = = => K'M = 2,5x10-5 M K'M + [S] K'M + 5 x 10-5 M K'M = 2,5x10-5 M = KM (1 + ([I] / Ki)) = 10-5 M (1 + ([I] / 2x10-5 M) => [I] = 4,8x10-4 M Número de veces = 4,8x10-4 M / 8x10-5 M = 6 veces

25 [S] = 0,1 M >>>>> KM => vo = Vmáx
Problema 24 d) Si ensayamos 5 µl de la preparación a [S] = 0,1 M, y en un volumen de reacción de 2 ml, ¿qué concentración de sustrato quedará a los cinco minutos de reacción)? [S] = 0,1 M >>>>> KM => vo = Vmáx En la preparación pura tenemos una actividad de 1500 U/ml: 1500 U/ml x 0,005 ml = 7,5 U => Vmáx = 7,5 µmoles/min 7,5 µmoles/min x 5 min = 37,5 µmoles de S consumidos [S] = 0,1 M = 0,1 mmoles / ml x 2 ml = 0,2 mmoles Moles de sustrato a los 5 min = 200 µmoles - 37,5 µmoles = 162,5 µmoles [S]5 min = 162,5 µmoles / 2 ml = 81,25 mM

26 Problema 24 e) ¿Cuál ha sido la recuperación en el proceso de purificación? ATF = U ATI = 5 U/ml x ml = U Recuperación = ATF / ATI x 100 = U / U x 100 = 60% f) Calcular la actividad por centro catalítico de la enzima. 1 mol de proteína pesa g => 1 µmol pesa 30 mg 3 mg de proteína pura => 0,1 µmoles de enzima, que presentan una actividad en condiciones óptimas de ensayo de µmoles/min N.R. = µmoles S min-1 / 0,1 µmoles E = min-1 A.c.c. = N.R. / Número de sitios = min-1 / 3 = min-1


Descargar ppt "Problema 1 Se ha purificado una enzima a partir de hígado de rata. En la purificación se partió de 500 ml de extracto crudo que contenía 2 g de proteína."

Presentaciones similares


Anuncios Google