La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

SQL Server 2005. Analysis Services Rubén Alonso Cebrián Código: HOL-SQL12.

Presentaciones similares


Presentación del tema: "SQL Server 2005. Analysis Services Rubén Alonso Cebrián Código: HOL-SQL12."— Transcripción de la presentación:

1 SQL Server Analysis Services Rubén Alonso Cebrián Código: HOL-SQL12

2 Agenda Introducción –Características –Componentes –Ediciones SQL Server Analysis Services (SSAS) Conceptos y Arquitectura Diseño y despliegue de un Unified Dimensional Model (UDM) Administración de SSAS 2005 Programación en SSAS 2005 Soluciones de minería de datos en SSAS 2005

3 Introducción

4 Alta disponibilidad para aplicaciones corporativas Mejoras en la seguridad Foco en la capacidad de administración. Auto optimización Gestión de datos corporativos Productividad del desarrollador Inteligencia de Negocio Integración con Visual Studio and.NET Tecnología XML nativa Interoperabilidad: estándares abiertos, Servicios Web Solución ETL completa Ayuda a la decisión en tiempo real: informes, Data Mining Mejoras en escalabilidad y disponibilidad Características generales SQL Server 2005

5 Componentes SQL Server 2005 Relational Database Engine.NET CLR Analysis Services Native HTTP Support Service Broker Replication Reporting Services Full-Text Search Notification Services SQL Server Integration Services

6 Ediciones

7 SQL Server Analysis Services (SSAS) Conceptos y Arquitectura

8 SQL Server 2005 Analysis Services Microsoft® SQL Server 2005 Analysis Services (SSAS) aporta funcionalidades OLAP y de minería de datos utilizando una combinación de tecnologías de cliente y servidor –OLAP services. Organizan los datos de un data warehouse en estructuras multidimensionales aportando respuestas a consultas de análisis. SSAS aporta: –Organización y resumen de datos en estructuras multidimensionales para responder consultas en tiempo real. –Ayuda en la toma de decisiones criticas mediante el uso de patrones e indicadores

9 Introducción a Datawarehouse Datos brutos frente a información de negocio Captura de datos en bruto Derivando la información de negocio de los datos en bruto Devolución de datos en información valiosa Sistema de Soporte de Decisiones Proceso en tiempo real de transacciones del negocio Contienen estructuras de datos optimizados para edición Provee de capacidades de soporte de decisión limitado Sistemas de fuentes de datos OLTP Sistema transaccional de negocio Características Proveen de datos para el proceso de análisis del negocio Integran datos desde sistemas de fuentes de datos heterogéneos Combinan datos validados frente a las reglas de negocio Organiza información no volátil Los datos se almacenan en estructuras que son optimizadas para extracción y consulta.

10 Características de un Datawarehouse Característica de base de datos Base de datos OLTPBase de datos OLAP Orientación del sistemaEjecución y procesamiento de transacciones diariasGeneración de información estratégica e histórica UsuariosOficinistas, contadores, personal informático, clientes, jefes de departamentos operativos Gerentes, ejecutivos, juntas directivas, analistas de información. Tipo de diseño de base de datosModelo de datos entidad-relación y/o sistemas de base de datos orientados a aplicaciones OLTP Base de datos multidimensionales, esquemas relacionales del tipo estrella, con objetivos estratégicos en la información Nivel de detalle de los datosSe almacenan con el mayor detalle ya que se trata de las transacciones específicas Datos agregados en distintos niveles, no interesa el detalle sino el resumen de los datos Características del Hardware y configuración Servidores de pequeños a medianos, sistemas de alta redundancia, configurados para tener recuperaciones ante fallos y optimizados para realizar transacciones puntuales en línea y con multitud de usuarios Servidores de grandes a gigantes, optimizados para almacenar grandes volúmenes de datos y responder a consultas complejas que involucran mucha información y con pocos usuarios Operaciones normalesMucha lectura y escritura: actualizaciones, inserciones, sistemas de seguridad con alta redundancia, consultas. Básicamente, lectura de los datos: consultas complejas de los usuarios Volúmenes de datosLa información es siempre la actual, el volumen de datos no responde a la cantidad de transacciones que se almacenen. De 100 MB a 1 o 2 GB. Se almacena información histórica, creciendo los Datawarehouse constantemente. Los volúmenes se miden en Gigabytes a Terabytes.

11 Cubos SSAS permite consultas grandes cantidades de datos de forma flexible gracias al almacenamiento de la información en cubos –El cubo es el interfaz primario entre usuarios y datos en una aplicación de BI –Representa un conjunto lógico de datos en un empresa, ventas, inventarios, transacciones, finanzas etc. –Es una estructura multidimensional compuesta por varias celdas –Mantiene los datos organizados dentro de un almacén de datos Barcelona Madrid Sevilla Producto 1 Producto 2 Producto 3

12 Características

13 Estructuras básicas En el ejemplo anterior: –Dimensiones: Modelo Color Vendedor Fecha –Medida: Cantidad Vendida

14 Tablas de hecho y Tablas de dimensiones Tabla de hechos Tabla de dimensiones Employee_DimEmployee_Dim EmployeeKey EmployeeID... EmployeeID... Time_DimTime_Dim TimeKey TheDate... TheDate... Product_DimProduct_Dim ProductKey ProductID... ProductID... Customer_DimCustomer_Dim CustomerKey CustomerID... CustomerID... Shipper_DimShipper_Dim ShipperKey ShipperID... ShipperID... Sales_Fact TimeKey EmployeeKey ProductKey CustomerKey ShipperKey TimeKey EmployeeKey ProductKey CustomerKey ShipperKey Sales Amount Unit Sales... Sales Amount Unit Sales...

15 Data Source y Data Source View Los data source contienen las tablas de hecho y dimensión incluidas en el cubo Encapsula las cadenas de conexión y usa proveedores de datos (OLEDB or.NET) para crear la conexión al almacén de datos Aporta las credenciales para autentificar la conexión Un data source view (DSV) representa el modelo de datos en función de un determinado data source. Permite encapsular el modelo de datos del data source para crear consultas y relaciones. El Data Source View Wizard especifica el esquema del DSV y lo hace apuntar a un o varios data sources

16 Dimensiones Organizan los datos en los cubos Describen una colección de atributos de interés para un usuario Basados directa o indirectamente en tablas El nivel más bajo de definición de las dimensiones son los atributos, que se corresponden con las columnas de las tablas de dimensión Dentro de una dimensión los atributos se organizan en jerarquías para permitir al usuario la navegación entre contenidos El orden de los atributos en una jerarquía se especifica en función de niveles, desde el más resumido al más detallado Los valores actuales de los atributos que constituyen una jerarquía se denominan miembros. Las dimensiones pueden generarse y mantenerse mediante el Dimension Wizard y el Dimension Designer.

17 Medidas y Grupos de medidas Un data source contiene tablas de hecho y tablas de medidas de un cubo Las tablas de hecho contienen datos numéricos del cubo que se corresponden con una columna en las tablas de hecho denominada medida Las tablas de hecho también contienen las claves secundarias que se unen a las claves primarias en las tablas de dimensión Las medidas representan elementos que son cuantificables SSAS resume las medidas y las hace visibles a través de jerarquías de varias dimensiones para ayudar en la toma de decisiones Grupos de medidas –Representan todas las medidas de una tabla de hecho dentro de un cubo –Se usan para asociar dimensiones comunes a múltiples medidas

18 Caso de Estudio

19 Detalles de los cubos Representa un conjunto de medidas agrupadas y jerárquicamente organizadas por dimensiones Las celdas de los cubos aumentan exponencialmente en función de los atributos que contienen. Los cubos se almacenan en particiones que no son visibles a los usuarios de los cubos Las particiones permiten la distribución de los orígenes de datos entre múltiples servidores

20 Unified Dimensional Model (UDM) Combina el modelo relacional, el multidimensional y el híbrido en un solo modelo de datos Permite a los procesos de analisis y reporting de OLAP ser transparantes al método de almacenamiento. Está construido como una capa de abstracción sobre los datos y aporta una pasarela entre como los usuarios finales ven los datos y como los datos finales son fisicamente almacenados

21 Novedades para los administradores Soporte para cluster Múltiples instancias Backup de bases de datos SSAS en un único archivo Mejoras de seguridad –Seguridad por defecto –Encriptación de bases de datos –Mayor granularidad de permisos –Autentificación Windows –Permisos a nivel de cubo,dimensión e incluso celdas individuales

22 Novedades para los desarrolladores El número de miembros de las dimensiones no tiene un limite en Múltiples modelos de almacenamiento –Relational OLAP (ROLAP) –Multidimensional OLAP (MOLAP) –Hybrid OLAP (HOLAP) Soporte multilenguaje Nuevos asistentes de minería de datos Posibilidad de modificar cálculos sin tener que reprocesar cubos

23 Nuevas capacidades en programación Nuevos entornos de gestión: –Intelligence Development Studio (BIDS) –SQL Server Management Studio MDX Scripting –Posibilidad de integrar los scripts con ensamblados externos XML/A –Esta basado en Simple Object Access Protocol (SOAP)- –Aporta acceso universal a cualquier entorno multidimensional a través de HTTP ADOMD.NET – proveedor estándar de.NET que permite a los clientes acceder a orígenes de datos multidimensionales AMO –Libreria de objetos.NET utilizada en aplicaciones para administrar SSAS mediante programacion Dimensiones, atributos, cubos, seguridad.

24 Diseño y despliegue de un Unified Dimensional Model (UDM)

25 Business Intelligence Development Studio Versión personalizada de Visual Studio que permite diseñar y desplegar soluciones end-to-end de business intelligence. Proyectos de Analysis Services que contienen la definición de objetos de Analysis Services

26 Visual Studio Integrated Development Environment

27 Asistente para Cubos Recibe la información necesaria para definir : –data source view –Tablas de hecho y dimensión –Jerarquías Una vez creado el cubo puede ser modificado mediante el Cube Designer.

28 Métodos de Construcción Puede generarse un cubo empleando o no un data source –Con data source, es necesario especificar un data source view valido y seleccionar las tablas de hecho y de dimensión –Sin data source es necesario utilizar el para generar el data source view

29 Identificando Tablas de Hecho y de Dimensiones Una vez seleccionado el data source view el Cube Wizard automáticamente analiza las relaciones entre las tablas Para esto se basa en las claves primarias y secundarias, así como en los datos numéricos de las tablas Cuenta con la posibilidad de seleccionar tablas de hecho y dimensiones para representar la dimensión tiempo Ofrece la posibilidad de especificar dimensiones compartidas incluida a través de múltiples cubos

30 Mapeo de periodos de tiempo Creación de jerarquías de dimensiones de tiempo basándonos en las columnas seleccionadas de la tabla de dimensión de tiempo. La granularidad de la dimensión de tiempo se determina en función de las reglas de negocio de la organización y de las necesidades de reporting

31 Selección de Medidas y Revisión de la Jerarquía de Dimensiones Las medidas son las cantidades agregadas que son analizadas a través de varias dimensiones Las columnas clave o de referencia no participan en los grupos de medidas. Cube Wizard automáticamente detecta las jerarquías entre medidas y nos ofrece la posibilidad de revisar sus resultados para excluir dimensiones o jerarquías.

32 Añadiendo Business Intelligence al Cubo Pueden añadírsele al cubo expresiones MDX o scripts, así como modificar cálculos. La clase de BI elegida determina los elementos de la solución que serán afectados El asistente realiza cambios en los data source views, dimensiones y definiciones de cubo en base al tipo de inteligencia seleccionada

33 Indicadores de Rendimiento (Key Performance Indicators) Solo podemos añadir KPI si el cubo está procesado Una vez añadidas es necesario reprocesar el cubo

34 Acciones Son sentencias MDX almacenadas y mantenidas por una base de datos de Analysis Services Son ejecutadas por aplicaciones cliente Contienen información sobre cuando y como las sentencias MDX serán mostradas y manejadas por las aplicaciones cliente Para ejecutar una acción un usuario final debe realizar una operación especifica que la inicialice

35 Perspectivas Aportan facilidad de acceso a los datos Similares a las vistas en SQL Server Aportan un subconjunto de datos

36 Múltiples lenguajes

37 Funciones definidas por el usuario SSAS aporta funciones intrínsecas para utilizarse con MDX y con lenguajes Data Mining Extensions (DMX) Posibilidad de añadir esemblados a instancias o bases de datos de Analysis Services, para crear funciones externas definidas por el usuario en lenguajes como Visual Basic®.NET o Microsoft Visual C#®.NET. Tras añadir el ensamblado los métodos públicos de la librería son expuestos como funciones definidas por el usuario a las expresiones, procedimientos, cálculos y acciones MDX y DMX. Para llamar a una función definida por el usuario es necesario hacer referencia a su nombre completo –Select.. ( )on 0 from

38 Administración de SSAS 2005

39 Migración a SSAS 2005 Analysis Services Migration Wizard. –Graficamente –Línea de comandos: MigrationWizard.exe –MSSQLServerOLAPService arrancado en origen y destino En el proceso de migración el asistente copia las bases de datos de SSAS 2000 y las recrea en una instancia de SSAS Las bases de datos de origen se mantienen intactas Para un mayor rendimiento resulta interesante migrar las bases de datos de una en una

40 Asistente de Migración de Analysis Services

41 Autentificación de usuarios Autentificación por defecto Si la instancia está configurada para permitir acceso anónimo Windows no autentica a los usuarios Tras autenticar a un usuario Analysis Services comprueba los permisos asociados para visualizar, actualizar datos o realizar tareas administrativas. Para poder realizar tareas los roles tienen que tener permiso a nivel de los distintos objetos de la base de datos Al instalar una instancia de SSAS todos los miembros de grupo local de administradores (incluidos los administradores del dominio) tienen permiso para realizar cualquier tarea

42 Analysis Services server role Rol fijo que aporta acceso administrativo a objetos en una instancia de SSAS. No pueden añadirse o eliminarse permisos de este rol Los miembros pueden acceder a todos las bases de datos y objetos de las instancias de SSAS. –Creación de bases de datos y configuración de propiedades –Mantenimiento de roles de base de datos –Gestión de trazas Por defecto todos los administradores del domino son administradores locales –Es posible deshabilitar la opción de servidor Security- BuiltinAdminsAreServerAdmins –Aunque los administradores locales son miembros por defecto del rol no aparecen en el interface de usuario

43 Roles de base de datos Se definen para gestionar el acceso a los objetos y a los datos por parte de usuarios no administradores Un Rol de base de datos con Full Control (Administrator) puede realizar las siguientes tareas –Gestionar objetos de base de datos –Leer datos y metadatos –Añadir usuarios a roles existentes –Generar nuevos roles de base de datos –Definir permisos para los roles de base de datos

44 Proceso de un cubo Implica una serie de pasos que convierten y almacenan los datos de un data source en un formato multidimensional para aportar mayor velocidad en las consultas Mediante el proceso pueden actualizarse datos en la en Analysis Services con respecto al origen de los datos Si se realizan cambios en un objeto es necesario volver a hacer un deploy del cubo Los objetos que deben mantenerse actualizados a través del proceso son –Grupos de medidas –Particiones –Dimensiones –Cubos –Bases de datos El proceso de los objetos contenedores implica el proceso de todos los objetos contenidos El proceso puede hacerse mediante: –SQL Server Management Studio –Business Intelligence Development Studio. –XML for Analysis Services (XMLA) –Analysis Management Objects (AMO). –Tareas de SSIS

45 Optimización del rendimiento de SSAS Mediante el SQL Profiler podemos: Depurar sentencias MDX. Identificar instrucciones MDX que funcionan con lentitud Auditar y revisar las actividades que suceden en una instancia de Analysis Services

46 Gestión de particiones Las particiones se basan en grupos de medidas Pueden utilizarse para mantener la integridad de los datos derivados de una tabla de hecho, una vista en un data source, o una consulta con nombre en un data source view Las particiones mejorar el rendimiento distribuyendo los orígenes de datos y los agregados entre múltiples discos o múltiples servidores Por defecto una partición se crea cuando un grupo de medidas es definido en un cubo Partición horizontal –Cada partición se basa en una consulta SQL que filtra los datos para la partición Por ejemplo una tabla contiene datos de varios países, el grupo de medidas puede dividirse por países podemos hacer esto mediante una cláusula WHERE. Partición vertical –Cada partición se basa en tablas separadas Por ejemplo varias bases de datos tienen tablas separadas para los datos de cada país

47 Caché proactivo Cada partición puede tener una opción de almacenamiento distinta para cada grupo de medidas MOLAP los datos y los agregados se almacenan en archivos multi- dimensionales. ROLAP los agregados se almacenan en tablas de las bases de datos relacionales especificadas en el data source –Permite navegar inmediatamente por los cambios más recientes del origen de datos aunque el rendimiento es menos eficiente que en MOLAP HOLAP combina los dos anteriores –Como en ROLAP los detalles se almacenan en formato relacional –Como en MOLAP los agregados de la partición se almacenan en una estructura multidimiensional

48 Caché proactivo II Las consultas definidas contra objetos OLAP van contra el almacenamiento ROLAP o MOLAP en función de si los datos han sido modificados recientemente Estas consultas se dirigen y almacenan el área de almacenamiento MOLAP hasta que los cambios ocurren en el origen de datos Después que los datos cambian en el origen de datos, los datos en el caché MOLAP se eliminan y se colocan en el área de almacenamiento ROLAP. Mientras tanto los objetos MOLAP se reconstruyen en caché Después de que las consultas se reconstruyen y procesan son devueltas al área de almacenamiento MOLAP. También se puede hacer caché proactivo borrando los objetos MOLAP actuales, las consultas son entonces definidas contra los objetos MOLAP mientras los datos son leídos y procesados en una nueva caché este método aporta mejor rendimiento pero muchos resultados en las consultas pueden retornar datos antiguos mientras la nueva caché está siendo generada

49 Programación en SSAS 2005

50 SQL Server Management Studio

51

52

53

54 MDX Query Editor Permite la creación, comprobación y ejecución de consultas

55 Object Explorer Aporta la organización jerárquica de los objetos de base de datos

56 Nuevas características MDX Atributos Subcubos Conjuntos de nombres

57 Atributos Son bloques de construccion de dimensiones Cada atributo se corresponde con una o más columnas de la tabla de dimensiones Los cubos contienen atributos organizados en dimensiones que apuntan a las medidas En una dimensión los atributos están tipicamente organizados en jerarquías. Una dimensión es una colección de atributos utilizados para organizar un cubo. Un cubo puede contener atributos a través de varias dimensiones Como resultado los atributos no son jerarquicos y se utilizan para obtener datos de los miembros de un cubo.

58 Subcubos Es un conjunto lógico de un cubo que puede ser tratado como un cubo Es un conjunto persistente de celdas que es devuelta desde un cubo cuando una expresión MDX lo evalúa CREATE SUBCUBE.

59 Conjuntos de Nombres Expresión a la que se le asigna un alias Se usan para definir objetos asociados a un cubo Se almacena como parte de la definición de un cubo Se crea para ser reutilizado en consultas MDX Permite identificar expresiones de sintaxis compleja CREATE [SESSION] SET Cube_Expression. Pueden crearse conjuntos de nombres en los siguientes ámbitos: –Consulta WITH SET ) –Sesión

60 Almacén de cálculos en un cubo Un calculo es una expresión MDX o script que se utiliza para definir objetos asociados con un cubo Podemos generarlo con el Cube Designer

61 Mejoras en programación XMLA ADOMD.NET ANALYSIS MANAGAMENT OBJECTS (AMO)

62 XMLA Protocolo estandarizado para acceder a datos mediante servicios Web sin necesidad de interfaces COM AMO y ADOMD.NET utilizan XMLA cuando se comunican con una instancia de SSAS. Hace referencia a dos métodos accesibles Discover y Execute Discover devuelve información desde un servicio Web la información puede ser una lista de orígenes de datos disponibles en un servidor o detalles sobre un origen de datos especifico Execute Envía comandos a una instancia utilizando SOAP y protocolos HTTP.

63 ADOMD.NET Aporta acceso a clientes a orígenes de datos multidimensionales Permite entornos conectados y desconectados –Conectados objeto AdomdDataReader –Desconectados objeto CellSet

64 AMO La librería AMO de.NET permite manejar objetos de Analysis Services, así como la seguridad y el proceso de cubos

65 Soluciones de minería de datos en SSAS 2005

66 Introducción al Data Mining Su razón de ser el analizar conjuntos de datos y plantearles cuestiones de negocio También permite generar modelos de predicción y evaluar su acierto Antes de generar soluciones de Data Mining es preciso crear modelos que describan el problema de negocio Un modelo de data mining se basa en un conjunto de algoritmos que se construyen a partir de las reglas fundamentales del analisis. –Exploracion –Descubrimiento de patrones –Prediccion de patrones Por ultimo es preciso definir los datos que se emplearan para realizar predicciones en el modelo

67 Algoritmos Naive Bayes –Identifica atributos mas aproximados a un resultado final –Es el algoritmo más simple Decision Tree –Identifica el arbol de atributos que mejor predice un resultado –Aporta una jerarquia de atributos utiles para tomar una decision Cluster –Identifica como los datos forman subgrupos y como estos subgrupos son diferentes unos de otros, encuentra patrones sin un objetivo especifico

68 Algoritmos II Association rule –Identifica un subgrupo de datos que participa en una transacción especifica. Suele emplearse para localizar tendencias de consumo Sequence cluster –Identifica el evento que probablemente ocurrirá a continuación Time Series –Identifica tendencias que están sucediendo –Toma como parámetro un atributo baso en tiempo –Útil para realizar pronósticos Neural network –Identifica el arbol de atributos que mejor predice el resultado –Similar al de decission pero tiene una estructura tridimensional

69 Modelos de Data Mining Podemos aplicar modelos a los siguientes escenarios: –Tendencias de ventas –Que productos pueden venderse juntos –Secuencia en la que los consumidores añaden productos a sus cestas Se crean después de que un algoritmo analiza un conjunto de datos y encuentra patrones y tendencias en los datos El resultado se emplea para establecer parámetros en el modelo Tipos –Relacionales –OLAP

70 Pasos para la creación de modelos de Data Mining Definir el problema Preparar los datos Explorar los datos Construir el modelo Explorar y evaluar el modelo Desplegar y actualizar el modelo

71 Creación de estructuras de Data Mining Especificaremos los siguiente: –El algoritmo inicial del modelo. –La dimensión del cubo que se quiere usar como origen de datos –Un atributo que puede emplearse como clave de modelo, en base al que se seleccionaran los atributos y las medidas utilizadas –Contenidos y tipos de datos de cada columna

72 Data Mining Designer

73 Data Mining Extensions (DMX) Lenguaje para crear y trabajar con modelos de mineria Contiene instrucciones DML y DDL

74 Herramientas OLAP SQL Server 2005 Reporting Services Microsoft Excel Microsoft Data Analyzer Herramientas desarrolladas –AddIn para Excel –Aplicaciones Asp o Asp.net –Webparts para Sharepoint (Scorecard Accelerator) BI Portal Microsoft Office Bussiness Scorecard Manager 2005 Herramientas de terceros

75 Microsoft Excel Add-in para SQL Server Analysis Services Definición: Herramienta de inteligencia empresarial que permite a los empleados usar Microsoft Office Excel para tener acceso a información relevante y crear rápidamente informes personalizadosCaracterísticas: Administrador de metadatos del cubo: Recupera y comparte la información del cubo OLAP Administrador de consultas: Consolida y ejecuta consultas, devuelve los resultados y realiza reescritura en los cubos Interfaz de usuario del generador de informes: Interfaz tipo Panel de tareas usada para generar informes y establecer conexiones con orígenes de datos Administrador de metadatos de informes: Mantiene el diseño del informe y permite interacciones con el informe, como enfocar, eliminar, ampliar o contraer, y realizar una obtención de detalles ascendente o descendente. Administrador de informes: Crea y administra fórmulas y presenta los resultados de las consultas en celdas de Excel

76 Microsoft Excel Add-in para SQL Server Analysis Services Permite a los usuarios tener acceso y analizar datos de varios cubos de Analysis Services. Crear informes detallados personalizados directamente en Microsoft Office Excel 2003 o Microsoft Excel 2002 Mejorar el análisis de datos así como acortar los ciclos de informes y mejorar la capacidad de su compañía para responder a sus clientes Visibilidad en Excel de las tendencias del negocio Mayor velocidad y calidad en el proceso de toma de decisiones Análisis de datos funcional que acorta los ciclos de elaboración de informes y ahorra recursos Mayor flexibilidad con informes detallados, actualizables y muy personalizados Acceso a información relevante de diversos orígenes de datos

77 Microsoft Excel Add-in para SQL Server Analysis Services

78

79

80 Microsoft Office Business Scorecards Accelerator Definición: Sistema de inteligencia empresarial consistente en una aplicación basada en Web que permite a una compañía: Simplificar la medición y administración de métricas de desempeño clave. Definir, visualizar y administrar indicadores de rendimiento y estrategias de toda la organización. Mayor rapidez, calidad y relevancia de la toma de decisiones. Mayor capacidad de medir, controlar y administrar el rendimiento empresarial.

81 Microsoft Office Business Scorecards Accelerator

82

83

84

85

86

87

88

89

90 Microsoft Office Business Scorecards Manager 2005 Permite a las organizaciones medir monitorizar y administrar el rendimiento de su negocio con indicadores interactivos (KPI) Consolida análisis de datos desde múltiples BBDD en indicadores visuales intuitivos e interactivos Utiliza: –Microsoft SharePoint Products and Technologies –Microsoft SQL Server –Microsoft Office Web Components

91 Boletín quincenal TechNews

92 Contactos Informática 64 –http://www.informatica64.comhttp://www.informatica64.com – Profesor


Descargar ppt "SQL Server 2005. Analysis Services Rubén Alonso Cebrián Código: HOL-SQL12."

Presentaciones similares


Anuncios Google