La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Tema 4: Medidas de posición individual. 1. Introducción. 2. Cuantiles: Rangos Percentiles, Percentiles, Deciles y Cuartiles. 3. Transformaciones lineales:

Presentaciones similares


Presentación del tema: "Tema 4: Medidas de posición individual. 1. Introducción. 2. Cuantiles: Rangos Percentiles, Percentiles, Deciles y Cuartiles. 3. Transformaciones lineales:"— Transcripción de la presentación:

1 Tema 4: Medidas de posición individual. 1. Introducción. 2. Cuantiles: Rangos Percentiles, Percentiles, Deciles y Cuartiles. 3. Transformaciones lineales: Puntuaciones típicas-- Introducción, cálculo y principales características. 4. Escalas derivadas –basadas en transformaciones lineales (Inciso final: El caso de las transformaciones no lineales)

2 En este tema vamos a ver índices estadísticos que permiten conocer diversos puntos característicos de la distribución que no sean necesariamente valores centrales. En particular, veremos índices que nos proporcionarán información de unos datos dentro del conjunto de datos. Como veremos, una persona con una puntuación con un percentil muy alto en un test de inteligencia querrá indicar que dicha persona está muy por encima de la mayoría de personas en inteligencia. De la misma manera, si sabemos que una persona tienes una puntuación típica positiva elevada en un test de inteligencia proporciona información sobre la inteligencia de dicha persona (una alta inteligencia en relación al grupo). 4.1 Introducción

3 4.2 Medidas de posición individual: centiles Los centiles dividen la distribución (ordenada) de datos en 100 partes. Cada parte contiene 1/100 de las puntuaciones. El Centil 60, por ejemplo, es aquella puntuación que deja por debajo de sí el 60% de los datos. El Centil 15 es aquella puntuación que deja por debajo de sí el 15% de los datos. Los centiles son cuantiles que dividen la distribución en 100 partes. Hay otros cuantiles. Uno de ellos es la mediana, que divide la distribución en dos partes (Mediana=Centil 50) Otros cuantiles son los deciles (Decil 1=Centil 10) y los cuartiles (Cuartil 1=Centil 25, Cuartil 2= Mediana, Cuartil 3=Centil 75)

4 Medidas de posición individual: centiles Cálculo de centiles Centil k: Posición de Orden = Mediana (Centil 50): NOTA: el cálculo lo veremos con datos individuales, y no con datos agrupados

5 Rango percentil (RP) Se trata de una medida inversa del percentil. Se puede emplear, por ejemplo, para indicar la posición del resultado de una prueba de aptitud entre los resultados de la prueba. Pensemos que una puntuación tiene un rango percentil de 78. Eso significa que el 78% de las otras personas tienen una calificación inferior. Cálculo (datos sin agrupar): Para calcular el rango percentil de una medida cualquiera se cuentan los inferiores a él, se divide ese número entre el número total. (Y se multiplica por 100 y se redondea.)

6 Ejemplo en Excel –página de Microsoft Función RANGO.PERCENTIL(matriz;x) Observad: Expresado en proporción, más que en porcentaje

7 4.3 Transformaciones lineales. Puntuaciones típicas Con la forma y=a+bx Que se emplea por ejemplo, para pasar de grados Celsius a grados Fahrenheit. Pero fijaros que esta transformación no cambia la forma de la distribución. (Puede cambiar la media y la desv.típica, pero no la forma de la distribución.)

8 Puntuaciones típicas Indican el número de desviaciones típicas en que una observación se separa de la media del grupo de datos. La media de las puntuaciones típicas es 0 La varianza (y desv.típica) es 1 Observad que las puntuaciones z son abstractas (ello permite la comparación de variables con escalas diferentes).

9 Puntuaciones típicas (ejemplo) Si tenemos dos estudiantes A y B que han hecho un examen, y sabemos que la puntuación típica de A para el grupo de estudiantes es de 1 y la puntuación típica de B es de 0, ¿quién tendrá mejor nota? Evidentemente es A; su puntuación está 1 desv.típica sobre la media del grupo; la de B corresponde a la de la media del grupo. Puntuaciones típicas y observaciones atípicas En muchos casos, se suele indicar que si z>3, tales valores se suelen considerar atípicos. (Que es un criterio que no tiene por qué coincidir con las puntuaciones atípicas en los diagramas de caja y bigotes.)

10 4.4 Escalas derivadas (sobre las puntuaciones típicas) Un pequeño inconveniente de las puntuaciones típicas es que conllevan el uso de valores muy pequeños (con decimales, habitualmente), así como valores negativos. Por ello, a veces se efectúan transformaciones lineales sobre las puntuaciones típicas. El ejemplo que vamos a ver son las puntuaciones T (con media 50 y desv.típica 10) y con las escalas de CI (con media 100 y desv.típica 15).

11 Puntuaciones T De manera genérica Observad que la nueva media viene dada por b, y que la desv.típica viene dada por el valor absoluto de a En el caso de las puntuaciones T, a=10 y b=50 Escala de CI En el caso de la escala de CI:

12 ¿Porqué hacemos transformaciones (no lineales) en los datos? -Para hacer la distribución más simétrica -Para hacer lineal la relación entre variables (caso de tener más de una variable; estadística bi/multivariada) INCISO: Transformaciones no lineales

13 Una familia de transformaciones especialmente útiles es la escalera de potencias de Tukey Corrigen asimetría positiva Corrigen asimetría negativa

14 Ejemplo. Datos de TR de un participante Observad no sólo que hay algunas puntuaciones atípicas a ambos lados, sino que hay una clara asimetría positiva.

15 Ejemplo. Datos (transformados; raiz cuadrad) de TR de un participante (cont.) Observad no sólo que aún queda algo de asimetría positiva. Con el logaritmo, podremos reducir más la asimetría positiva, es lo que haremos ahora HEMOS EFECTUADO LA RAIZ PARA HACER MÁS SIMETRICA LA DISTRIBUCIÓN.

16 Ejemplo. Datos (transformados; logaritmo) de TR de un participante (cont.) Observad no sólo que la asimetría positiva ha desaparecido (si acaso hay cierta asimetría negativa causada por unas pocas puntuaciones atípicas). Nota: Si algún valor fuera 0, emplear log(1+x)

17 Ejemplo. Datos (transformados; cuadrado) de TR de un participante (cont.) Nota: Emplear el cuadrado no lo debéis hacer para corregir la asimetría positiva...sólo la negativa! Lo que hemos hecho es aumentar la asimetría positiva y eso no es lo que queríamos...(y si empleamos el cubo, aún peor para nuestros fines).

18 Esta familia de transformaciones (escalera de Tukey) tiene importantes propiedades: 1.Preservan el orden de los valores; es decir, los valores mayores de la escala original seguirán siendo los valores mayores en la escala transformada. 2. Modifican la distancia entre los valores. Con potencias p 1 (como el cuadrado de x) se tiene el efecto contrario. 3. El efecto sobre la forma de la distribución cambia sistemáticamente con p. Si raíz x hace menos pronunciada la asimetría positiva de una distribución, el log x provocará que la distribución resultante sea aún menos asimétrica positiva (en relación a raíz x).

19 En definitiva, las transformaciones de potencia pueden hacer que la variable transformada tenga menos asimetría. ¿Por qué es eso importante? – Las distribuciones que muestran una clara asimetría son difíciles de estudiar. – Los valores originales aparentemente atípicos se encontrarán más cercanos al grueso de los datos. – Los métodos estadísticos suelen emplear la media aritmética; pero la media de una distribución asimétrica no es un buen índice del grueso de los datos.


Descargar ppt "Tema 4: Medidas de posición individual. 1. Introducción. 2. Cuantiles: Rangos Percentiles, Percentiles, Deciles y Cuartiles. 3. Transformaciones lineales:"

Presentaciones similares


Anuncios Google