La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

ANALISIS MULTIVARIADOS (Definiciones Dr. Roberto Mercado Hernández, Laboratorio de Estadística, México.

Presentaciones similares


Presentación del tema: "ANALISIS MULTIVARIADOS (Definiciones Dr. Roberto Mercado Hernández, Laboratorio de Estadística, México."— Transcripción de la presentación:

1 ANALISIS MULTIVARIADOS (Definiciones Dr. Roberto Mercado Hernández, Laboratorio de Estadística, México

2 ANALISIS MULTIVARIADOS (Definiciones) Regresión y Correlación Es la relación (función) entre más de dos variables, donde una de ellas se asume como dependiente de las demás. Es el grado de asociación entre más de dos variables, donde no hay una variable dependiente de las otras. Correspondencia (A F C) Consiste en la extracción de relaciones entre categorías y define similaridades o disimilaridades entre ellas, lo que permitirá su agrupamiento si se detecta que se corresponden. Componentes principales Es una técnica estadística de síntesis de la información, o reducción de la dimensión (número de variables). Es decir, ante un banco de datos con muchas variables, el objetivo será reducirlas a un menor número, perdiendo la menor cantidad de información posible. Los nuevos componentes principales o factores serán una combinación lineal de las variables originales, y además serán independientes entre sí. Análisis Cluster Es un conjunto de técnicas que se utilizan para clasificar los objetos o casos en grupos relativamente homogéneos llamados conglomerados (clusters). Los objetos en cada grupo (conglomerado) tienden a ser similares entre sí (alta homogeneidad interna, dentro del cluster) y diferentes a los objetos de los otros grupos (alta heterogeneidad externa, ente clusters) Análisis Discriminante Es una técnica multivariante de clasificación de individuos, en la que se presupone la existencia de dos o más grupos bien definidos a priori (por ejemplo, ejemplares de la misma especie en dos localidades diferentes, clientes solventes y no solventes; votantes de uno u otro partido; compradores y no compradores de un producto; etc) Correlación canónica Es una técnica para estudiar las asociaciones entre dos conjuntos de variables. Ccorrelacionar simultaneamente varias variables dependientes y varias var. independientes R M H

3 Regresión En la relación de las variables independientes (todas con distribución normal), con la variable dependiente (también normal), se establece un error. Correspondencias (A F C) En este análisis se ordenan los datos en una tabla disyuntiva completa (Z) que consta de un conjunto de individuos I=1,2,…n (filas), unconjunto de variables o caracteres cualitativos J I, …, J K,…, J Q (columnas) y un conjunto de modalidades excluyentes 1, …, m k para cada carácter cualitativo. Componentes principales (ACP) Análisis Cluster (AC) Análisis Discriminante Es una técnica estadística de la rama del análisis multivariante, en la cual la variable dependiente es indicadora y no numérica como en el análisis de regresión. El modelo se construye basado en un set de observaciones para las cuales se conocen las clases. Este set de observaciones es algunas veces conocido como el training set. Los únicos requerimientos previos para la aplicación del ACP son: a) Continuidad en las variables. b) El número n de individuos o elementos observados debe ser mayor que el número p de variables originales. Por otra parte, el ACP tiene la ventaja de no exigir supuestos tales como la normalidad u homoscedasticidad. El AC es un objetivo metodológico para cuantificar las características de un conjunto de observaciones. Por ello, tiene fuertes propiedades matemáticas, pero no fundamentos estadísticos. Los requisitos de normalidad, linealidad y homocedasticidad (tan relevantes en otras técnicas), tienen poca consistencia en el AC. ANALISIS MULTIVARIADOS (Condiciones) R M H

4 Análisis Cluster Jerárquicos Aquéllos que configuran grupos con estructura arborescente, de forma que clusters de niveles más bajos van siendo englobados en otros de niveles superiores. No jerárquicos Asignan los casos a grupos diferenciados que el propio análisis configura, sin que unos dependan de otros. Análisis Discriminante Explicar Predecir La pertenencia de cada caso del archivo patrón a uno u otro grupo, en función de las variables de su perfil, para comprobar su pertenencia. A qué grupo más probable habrá de pertenecer un nuevo individuo del que únicamente se conoce su perfil de variables. Componentes Principales Un aspecto clave en ACP es la interpretación de los factores, ya que ésta no viene dada a priori, sino que será deducida tras observar la relación de los factores con las variables iniciales (habrá, pues, que estudiar tanto el signo como la magnitud de las correlaciones). Regresión Correlación Es importante analizar la magnitud, sigo y significancia de los coeficientes. Su valor indica el grado de asociación entre las variables. Correspondencias (A F C) Es centrado y el centro de gravedad de las modalidades de una variable coincide con el del conjunto J, y con el origen, las modalidades de cada variable están centradas en torno al origen, no pudiendo tener todas el mismo signo. ANALISIS MULTIVARIADOS (a considerar) R M H

5 Fórmula de Lance y Williams Dk(ij) = αiDki + αjDkj + βDij + γDki - Dkj Análisis Cluster Función discriminante de Fisher D1i = u1iX1 + u2iX2 + …. + ukiXk Análisis Discriminante Primer componente principal Z 1i = u 1i X 1i + u 2i X 2i + …. + u 1p X pi Componentes principales Regresión múltiple Y = a 0 + a 1 X 1 + a 2 X 2 + …. + a p X p +ε Regresión Correspondencias (Inercia = variación explicada) Inercia debida a la modalidad J Inercia total Inercia debida a una variable ANALISIS MULTIVARIADOS (Ecuaciones) R M H

6 EJEMPLO DE REGRESION Y CORRELACION MULTIPLE R M H Variables no significativas

7 The canonical correlation measures the association between the discriminant scores and the groups. EJEMPLO DE CORRELACION CANONICA R M H

8 EJEMPLO DE CORRSPONDENCIAS Cadáver Especie 1Especie 2 PupasLarvasPupasLarvas Localidad A M. Natural M. P. Asesinato Localidad B M. Natural M. P. Asesinato Categorías Coordenada 1 Coordenada 2 Hileras Loc. 1 M. natural (1) Loc. 1 M.P. asesinato (2) Loc. 2 M. natural (3) Loc. 2 M.P. asesinato (4) Columnas Sp. 1 pupas (5) Sp. 1 larvas (6) Sp. 2 pupas (7) Sp. 2 larvas (8) Frecuencias de pupas y larvas de dos especies encontradas en cadáveres en dos localidades. Resultados del análisis de correspondencias X 2 = gl = 9 p < 0.05 R M H Inercia total = Los primeros dos eigenvalues comprenden el 95.5% de la inercia

9 Coordenada 1 Coordenada 2 R M H

10 EJEMPLO DE COMPONENTES PRINCIPALES R M H

11 EJEMPLO DE COMPONENTES PRINCIPALES (Localidad 1) R M H

12 Localidad 2 Localidad 3 % of Variance = in Component 1 l. pico R M H

13 EJEMPLO DE ANALISIS CLUSTER R M H

14 EJEMPLO DE ANALISIS DISCRIMINANTE R M H

15

16 LITERATURA Everitt, B. S. and Graham Dunn, Applied Multivariate data Analysis, Edt. ARNOLD Everitt, B. S. and Graham Dunn, Applied Multivariate data Analysis, Edt. ARNOLD Gnanadesikan, R., Methods for Statistical Data Analysis of Multivariate Observations, JOHN WILEY & SONS, INC. Gnanadesikan, R., Methods for Statistical Data Analysis of Multivariate Observations, JOHN WILEY & SONS, INC. Johnson R. A. and Dean W. Wichern, Applied Multivariate Statistical Analysis, PRENTICE HALL. Johnson R. A. and Dean W. Wichern, Applied Multivariate Statistical Analysis, PRENTICE HALL. Kachigan, S. K., Multivariate Statistical Analysis, RADIUS PRESS, NY. Kachigan, S. K., Multivariate Statistical Analysis, RADIUS PRESS, NY. Hair J. F., R. E. Anderson, R. L. Tatham y W. C. Black, PRENTICE HALL. Hair J. F., R. E. Anderson, R. L. Tatham y W. C. Black, PRENTICE HALL. Kleinbaum, D. G., L. L. Kupper, K. E. Muller and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, DUXBURY PRESS. Kleinbaum, D. G., L. L. Kupper, K. E. Muller and A. Nizam, Applied Regression Analysis and Other Multivariate Methods, DUXBURY PRESS.


Descargar ppt "ANALISIS MULTIVARIADOS (Definiciones Dr. Roberto Mercado Hernández, Laboratorio de Estadística, México."

Presentaciones similares


Anuncios Google