La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Es el menor de los ángulos que forman sus vectores direccionales

Presentaciones similares


Presentación del tema: "Es el menor de los ángulos que forman sus vectores direccionales"— Transcripción de la presentación:

1 Es el menor de los ángulos que forman sus vectores direccionales
Ángulo de dos rectas Es el menor de los ángulos que forman sus vectores direccionales

2 Expresión analítica del ángulo de dos rectas
cos ( Ù r , s ) = |aa' + bb' cc'| a 2 b c a' b' c'

3 Vector normal a un plano
Como A  p y B  p tenemos que: ax1 + by1 + cz1 + d = 0 ax2 + by2 + cz2 + d = 0 Restando término a término obtenemos: a(x2 – x1) + b(y2 – y1) + c(z2 – z1) = 0 (a, b, c) . (x2 – x1, y2 – y1, z2 – z1) = 0

4 Ángulo de dos planos El ángulo de dos planos secantes a y b es el menor de los ángulos diedros que determinan. Su medida coincide con el ángulo rectilíneo formado por dos rectas perpendiculares a la arista en un punto cualquiera.

5 Ángulo de dos planos dados en forma general
Si a: Ax + By + Cz + D = 0 y b: A'x + B'y + C'z + D' = 0. Entonces: cos ( Ù a , b ) = |AA' + BB' CC'| A 2 B C A' B' C'

6 Ángulo de recta y plano El ángulo de una recta r y un plano a es igual al ángulo que forma la recta r con la proyección ortogonal, r', de r sobre a.

7 Expresión analítica del ángulo de recta y plano.
cos ( Ù r , a ) = |aA + bB cC | 2 b c A B C

8 Distancia entre dos puntos
A(x1, y1, z1) • B(x2, y2, z2)

9 Distancia punto - plano
Dado P (un punto) y a (un plano), se define la distancia punto-plano, d(P, a), como la longitud del segmento PQ, en donde Q es la proyección ortogonal de P sobre el plano. Según la definición anterior: d(P, a) = d(P, Q) A a P n = Q + QP = 0

10 Distancia entre dos planos paralelos
La distancia entre dos planos paralelos es igual a la distancia de un punto cualquiera de un plano al otro plano. d(a, b) = d(Pa, b) = d(Pb, a)

11 Distancia punto - recta
Dado P (un punto) y r (una recta), se define la distancia punto recta, d(P, r), como la longitud del segmento PQ, en donde Q es la proyección ortogonal de Q sobre la recta. (a, b, c) (xo, yo, zo) (x1, y1, z1) Según la definición anterior: d(P, r) = d(P, Q) = 0

12 Distancia entre dos rectas paralelas
La distancia entre dos rectas paralelas es igual a la distancia de un punto cualquiera de una de ellas a la otra. s d(r, s) = d(Pr, s) = d(Qs, r)

13 Ecuación del plano mediador como lugar geométrico
Se define el plano mediador de un segmento como el plano perpendicular en su punto medio. Ecuación del plano mediador como lugar geométrico (1, 2, 3) (3, –5, 6) P (x, y, z) Ecuación del plano mediador algebraicamente

14 Planos bisectores de un ángulo diedro
Los planos bisectores se pueden definir como el lugar geométrico de los puntos del espacio que equidistan de los planos que forman el diedro Por tanto: P(x, y, z) Î plano bisector Û Û d(P, a) = ± d(P, b) P(x, y, z) Al eliminar radicales de estas dos ecuaciones obtenemos las ecuaciones de los dos planos bisectores.

15 Distancia entre dos rectas que se cruzan
La distancia entre dos rectas r y s que se cruzan es la existente entre el plano paralelo a r que pasa por s y el plano paralelo a s que pasa por r. Partiendo de la figura d(r, s) = d(As, a) Como sabemos que Y nos quedará:

16 Perpendicular común La perpendicular común a dos rectas no paralelas es la recta que corta ortogonalmente a cada una de ellas. p us s ur x us As b La recta p, perpendicular común, queda determinada por el corte de los planos a y b. r a Ar ur Se observa que a (Ar, ur, ur x us) b (As, us, ur x us)

17 Áreas de paralelogramos y triángulos
S(ABCD) = | AB x AC | Triángulos S(ABC) = |AB x AC| 1 2

18 Volumen de paralelepípedos y tetraedros
V = | det (AB, AC, AD) | Por ser una pirámide: V = (1/3) . base . altura Tetraedro 1 2 Base = S(ABC) = |AB x AC| Altura = h = |AD| cos(AD, h) Por tanto: V= |AD . (AB x AC)| = |det (AB, AC, AD)| 1 6


Descargar ppt "Es el menor de los ángulos que forman sus vectores direccionales"

Presentaciones similares


Anuncios Google