Descargar la presentación
La descarga está en progreso. Por favor, espere
1
PROPORCIONALIDAD 2º ESO
Deberás hacer clic con el botón izquierdo del ratón para avanzar paso a paso
2
PROPORCIONALIDAD 2º ESO
1.-Razón de dos números Hasta ahora, el cociente indicado de dos números, por ejemplo 8 y 7, era una división, 8 : 7 y también una fracción, Vamos a añadir un nuevo significado a ese cociente. Es el de razón de dos números. Diremos que la razón de dos números es su cociente indicado. La expresaremos en forma de fracción y la leeremos “8 es a 7”. Ejemplo: La razón de 5 y 8 es “5 es a 8” En la práctica, podemos considerar a razón y fracción como cosas similares. Por ello podremos decir que la razón entre 15 y 20 es o , que es la fracción equivalente irreducible Cuando aplicamos la razón de dos números a cantidades estamos expresando la relación que hay entre ellas. Es decir, si la razón de dos cantidades es significa que por cada 5 unidades de la primera hay 8 de la segunda. Las escalas de planos y mapas son, en realidad, razones entre las medidas del papel y del terreno.
3
PROPORCIONALIDAD 2º ESO
2.- Proporción Proporción es la igualdad de dos razones. Es decir, si dos razones son iguales, puedo escribir esa igualdad y a la expresión que resulta la llamamos proporción. Las razones y son iguales. Puedo escribir por tanto Es una proporción y la leeremos: “1 es a 2 como 3 es a 6” Al igual que en las fracciones equivalentes, también en una proporción puede haber algún término desconocido. Lo calcularemos de la misma forma. Fíjate en los ejemplos:
4
3.- Magnitudes directamente proporcionales y
PROPORCIONALIDAD 2º ESO 3.- Magnitudes directamente proporcionales y magnitudes inversamente proporcionales. Dos magnitudes son directamente proporcionales si al variar una de ellas en un sentido, la otra varía en el mismo sentido. Es decir: A doble en la primera magnitud, doble en la segunda . Número de personas que van en el autobús y recaudación del autobús . Tiempo que está encendida una bombilla y consumo de energía . Número de vacas que posee un granjero y pienso que gasta a la semana Dos magnitudes son inversamente proporcionales si al variar una de ellas en un sentido, la otra varía en sentido contrario. Es decir: A doble en la primera magnitud, mitad en la segunda . Número de obreros y tiempo en hacer un trabajo . Velocidad de un coche y tiempo en recorrer un trayecto . Número de vacas y tiempo que durará el pienso
5
PROPORCIONALIDAD 2º ESO
4.- Tablas de proporcionalidad y proporciones Propocionalidad directa Propocionalidad inversa Naranjas (kg) Precio (€) 2 4 3 6 8 5 10 Operarios Tiempo (h) 2 12 3 8 4 6 En la proporcionalidad directa, la razón de dos cantidades de una magnitud forma proporción con la razón de las cantidades correspondientes en la otra magnitud. En la proporcionalidad inversa, la razón de dos cantidades de una magnitud forma proporción con la razón inversa de las cantidades correspondientes en la otra magnitud.
6
PROPORCIONALIDAD 2º ESO
5.- Resolución de problemas de proporcionalidad Para resolver un problema de proporcionalidad debes seguir los siguientes pasos: 1º.- Determinar si la proporcionalidad entre las magnitudes es directa o inversa 2º.- Plantear la regla de tres señalando si es directa o inversa. Expresa las cantidades de cada magnitud en la misma unidad. 3º.- Escribir la proporción correspondiente 4º.- Hallar x Fíjate en los siguientes ejemplos. Para realizar cierto trabajo 10 obreros emplean 8 horas. ¿Cuánto les hubiera costado a 16 obreros? (Es inversa porque a doble de obreros mitad de tiempo) Nº obreros Tiempo (h) x I Solución horas Si por 12 camisetas pago 96 €, ¿cuánto pagaré por 57 de esas camisetas? ( Es directa porque a doble de camisetas doble dinero) Camisetas Dinero(€) x D Solución 456 €
7
PROPORCIONALIDAD 2º ESO
6.- Problemas de proporcionalidad compuesta (1) Son problemas de proporcionalidad compuesta aquellos en los que intervienen más de dos magnitudes. Para resolver un problema de proporcionalidad compuesta debes seguir los siguientes pasos: 1º.- Plantea la regla de tres. Expresa las cantidades de la misma magnitud en la misma unidad. 2º.- Compara cada magnitud con la que lleva la x para ver si la proporcionalidad entre ellas es directa o inversa. Escribe D debajo de las directas e I debajo de las inversas. 3º.- Si hay alguna proporcionalidad inversa vuelve a plantear la regla de tres invirtiendo las cantidades en las que sean inversas. 4º.- Escribe una proporción de la siguiente forma: la primera razón con las cantidades de la magnitud donde está la x , la segunda razón con el producto de las cantidades de las demás magnitudes. Fíjate en el siguiente ejemplo.
8
PROPORCIONALIDAD 2º ESO
6.- Problemas de proporcionalidad compuesta (2) Un taller, trabajando 8 horas diarias, ha necesitado 5 días para fabricar piezas. ¿Cuántos días tardará en hacer piezas trabajando 10 horas diarias? Nº Piezas Horas día Días (A doble de piezas, doble de días necesarios) x (A doble de horas diarias, mitad de días) D I x Tardará días
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.