La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

A signal processing approach to Pharmacokinetics, Pharmacodynamics and Biopharmaceutics Data Analysis Carlos Óscar Sorzano Sánchez Directores: Dr. Antonio.

Presentaciones similares


Presentación del tema: "A signal processing approach to Pharmacokinetics, Pharmacodynamics and Biopharmaceutics Data Analysis Carlos Óscar Sorzano Sánchez Directores: Dr. Antonio."— Transcripción de la presentación:

1 A signal processing approach to Pharmacokinetics, Pharmacodynamics and Biopharmaceutics Data Analysis Carlos Óscar Sorzano Sánchez Directores: Dr. Antonio Aguilar y Dra. Consuelo Montejo Madrid, 21 de enero de 2015

2 Contenidos Introducción Objetivos Metodología Resultados Conclusiones

3 Contenidos Introducción Objetivos Metodología Resultados Conclusiones

4 Motivación

5 Modelado matemático Este modelo carece de poder explicativo

6 Modelado matemático

7 Contexto Biofarmacia Farmacocinética Farmacodinamia
De qué se encarga cada parte y que tradicionalmente se han tratado por separado aunque PK/PD empieza ahora a estar muy unidos.

8 Contexto Interés metodológico Interés farmaceútico

9 Solución tradicional a los problemas
Basados en la solución integral de la ecuación diferencial para casos simples y particulares Gabrielsson & Veiner, Pharmacokinetic and Pharmacodynamic data analysis. Swedish Pharmaceutical Press 2000 Chapter 7. Pharmacokinetics of an Intravenous Bolus Injection in a One-Compartment Model. Chapter 9. Pharmacokinetics of Extravascular Drug Administration. Chapter 11. Pharmacokinetics of Intravenous Infusion in a One-Compartment Model. Chapter 12. Multiple Intravenous Bolus Injections in the One-Compartment Model. Chapter 13. Multiple Intermittent Infusions. Chapter 14. Multiple Oral Doses. Rosenbaum, Basic Pharmacokinetics and Pharmacodynamics. Wiley 2011

10 Solución tradicional a los problemas
Identificación de los parámetros basada en “recetas” de cálculo Gabrielsson & Veiner, Pharmacokinetic and Pharmacodynamic data analysis. Swedish Pharmaceutical Press 2000

11 Contenidos Introducción Objetivos Metodología Resultados Conclusiones

12 Objetivo de la tesis Enmarcar los problemas de biofarmacia, farmacocinética y farmacodinamia en un contexto de sistemas discretos con las ventajas de: No necesitar una solución analítica. Incorporar cualquier régimen posológico. Permitir dosis intravasculares y extravasculares en cualquier configuración temporal. Permitir múltiples medidas en cualquier configuración temporal Permitir determinar la incertidumbre en los parámetros. Ser fácilmente implementable. Permitir la integración de las tres disciplinas. Mostrar las hipótesis implícitas adoptadas por la aproximación tradicional. Dotar de un marco teórico mucho más general que el tradicional.

13 Contenidos Introducción Objetivos Metodología Resultados Conclusiones

14 Señales, …

15 Señales, … Señales multivariantes

16 …, sistemas, …

17 …, y ruido Lo más importante es su distribución estadística medida a través de su función densidad de probabilidad y las funciones conjuntas de densidad de probabilidad de las que se derivan todas sus propiedades estadísticas incluidas la media, varianza, covarianza, estacionariedad, ergodicidad, etc.

18 El problema farmaceútico
Patient system Measurement system

19 Señales de uso habitual
Bolo Dirac’s delta

20 Señales de uso habitual
Perfusión continua Heaviside’s function

21 Una aproximación de sistemas
Parámetros Señal de entrada Señal de salida

22 Un único bolo → Respuesta al impulso del sistema

23 El mito de la convolución/deconvolución
Sólo es válido para sistemas lineales e invariantes en el tiempo. Dressman, J.B. and Lennernas, H. Oral drug absroption. Marcel Dekker Inc. 2000

24 La importancia de trabajar con la ecuación diferencial y no su solución: La limitación del estado estable

25 La importancia de trabajar con la ecuación diferencial y no su solución: La limitación del estado estable Dosis: Días 1-10: 100mg/24 h Días 11-20: 200mg+300mg/24h

26 Sistema continuo → Sistema discreto

27 Sistema continuo → Sistema discreto

28 Sistema continuo → Sistema discreto: Orden de aproximación

29 Sistema continuo → Sistema discreto: Orden de aproximación: Runge-Kutta
0.1% → %

30 Sistema continuo → Sistema discreto: Orden de aproximación: Runge-Kutta
También se puede hacer con sistemas de ecuaciones

31 Sistema continuo → Sistema discreto: Orden de aproximación: Runge-Kutta

32 Sistema continuo → Sistema discreto: Existencia, unicidad y convergencia
Problema de Valor Inicial: Existe una solución y ésta es única si se cumple la condición de Lipschitz Epsilon se llama el error global Un sistema discreto será de la forma: Y el sistema converge si:

33 Sistema continuo → Sistema discreto: Consistencia y estabilidad
El sistema es consistente si Tau se llama el error local. De forma intuitiva el método es consistente si conociendo la solución exacta hasta tn, el método predice tn+1 con un error acotado. Un método es estable si el error local tiende hacia cero cuando el periodo de muestreo tiende hacia cero. Un método es cero-estable si los errores de redondeo no hacen que la solución explote. El sistema es estable si y El sistema es cero-estable si Cero-estabilidad + consistencia → convergencia

34 Sistema continuo → Sistema discreto: Consistencia y estabilidad
Cualquier sistema se puede poner de la forma El sistema es absolutamente estable si todas las raíces de Tau se llama el error local. De forma intuitiva el método es consistente si conociendo la solución exacta hasta tn, el método predice tn+1 con un error acotado. Un método es estable si el error local tiende hacia cero cuando el periodo de muestreo tiende hacia cero. Un método es cero-estable si los errores de redondeo no hacen que la solución explote. cumplen Discretización explícita e implícita: Todos los sistemas implícitos son absolutamente estables

35 Sistema continuo → Sistema discreto: Estabilidad y periodo de muestreo
El periodo de muestreo debe garantizar la estabilidad absoluta del sistema Ejemplo: Eliminación de primer orden con autoinducción La regla trapezoidal es una buena forma de conseguir esquemas estables con un orden de consistencia 2. Regla trapezoidal

36 Sistema continuo → Sistema discreto: Estabilidad y periodo de muestreo
=1.92min

37 Identificación de sistemas
Ya sabemos cómo generar la curva con un ordenador

38 Identificación de sistemas
= Ya sabemos cómo generar la curva con un ordenador

39 Identificación de sistemas
Marco general de máxima verosimilitud Error de medida Error temporal Least Squares Gausiano Sin error Total Least Squares Weighted Least Squares Gausiano dependiente de la concentración

40 Identificación de sistemas
Marco general de máxima verosimilitud Least Squares: Total Least Squares: Generalized Least Squares tiene la matriz W llena y da cuenta de las correlaciones entre muestras Weighted Least Squares: Generalized Least Squares:

41 Identificación de sistemas
Marco general de máximo a posteriori (enfoque Bayesiano) Error de medida Error temporal Distribución a priori Regresión Bayesiana Gausiano Sin error Gausiana sin correlación entre parámetros Pero se podría optimizar numéricamente con cualquier distribución a priori de parámetros

42 Identificación de sistemas: Algoritmo de optimización local

43 Identificación de sistemas: Algoritmo de optimización global

44 Identificación de sistemas: determinación del nivel de incertidumbre (Bootstrapping)

45 Identificación de sistemas

46 Identificación de sistemas
Residual variance: Coefficient of determination: Adjusted coefficient of determination: Akaike’s Information Criterion: Bayesian Information Criterion: Final Prediction Error:

47 Sensibilidad: Parámetros → Medidas
Índice de sensibilidad Administración extravascular con degradación extravascular, eliminación de primer orden

48 Sensibilidad: Parámetros → Medidas
Sensibilidad normalizada como una mejor forma de mostrar la dependencia, pero esta normalización de Kimko, H. C. & Duffull, S. B. (Eds.) Simulation for designing clinical trials: a pharmacokinetic-pharmacodynamic modeling perspective Marcel Dekker Inc., 2003 no es suficiente. Es mejor la que yo propongo.

49 Sensibilidad: Parámetros → Medidas
Comentar la presencia del 0 en la sensibilidad de V

50 Sensibilidad: Parámetros → Medidas
Sensibilidad basada en varianza Pero está asumiendo independencia entre parámetros, la fórmula completa debería usar el Hessiano Kimko, H. C. & Duffull, S. B. (Eds.) Simulation for designing clinical trials: a pharmacokinetic-pharmacodynamic modeling perspective Marcel Dekker Inc., 2003 La fórmula del Hessiano es totalmente novedosa

51 Sensibilidad: Parámetros → Medidas
Hessiano normalizado:

52 Sensibilidad: Parámetros → Medidas
Cómo proceder si no hay una fórmula analítica:

53 Sensibilidad: Parámetros → Medidas
Absorción constante con eliminación mediada por una enzima

54 Sensibilidad: Parámetros → Medidas
Absorción constante con eliminación mediada por una enzima

55 Identificabilidad: Medidas → Parámetros
Asintóticamente, los parámetros estimados por máxima verosimilitud tienden a los valores reales Con una varianza dada por la matriz de información de Fisher Que en nuestro caso de ajuste por mínimos cuadrados se obtiene

56 Identificabilidad: Medidas → Parámetros
Si además hay información a priori (Gaussiana) sobre los parámetros Una consecuencia importante es que hay un límite inferior para la varianza de cualquier estimador de los parámetros (Crámer-Rao lower bound) Este ejemplo es de un sistema con absorción lineal, degradación en la absorcion y eliminación lineal.

57 Identificabilidad: Medidas → Parámetros
Instantes de máxima “identificabilidad”

58 Integración del cuerpo de conocimiento en el nuevo marco: Generalización
Dosis intra- y extravascular, absorción de orden 0 y 1, eliminación antes de llegar al compartimento central, eliminación en el compartimento central, compartimento periférico, cualquier tipo de régimen posológico.

59 Integración del cuerpo de conocimiento en el nuevo marco: Generalización
Absorción en múltiples lugares

60 Integración del cuerpo de conocimiento en el nuevo marco: Generalización
Disolución fraccionaria Disolución de 1er orden Disolución fraccionaria La disolución fraccionaria aparece al considerar efectos fractales en la estructura de la matriz donde se inserta el fármaco.

61 Conocimiento a priori de la función densidad de probabilidad
Integración del cuerpo de conocimiento en el nuevo marco: Estimación de distribuciones Estimación a partir de medidas Conocimiento a priori de la función densidad de probabilidad QH es l flujo hepático, EH el factor de extracción, fu la fracción libre, Clint el aclaramiento intrínseco y ClH el aclaramiento hepático

62 Integración del cuerpo de conocimiento en el nuevo marco: Dinamización
Unión no competitiva

63 Integración del cuerpo de conocimiento en el nuevo marco: Modelos integrados
Modelo disolución y reacción

64 Integración del cuerpo de conocimiento en el nuevo marco: Biofarmacia
Difusión Primera ley de Fick: Segunda ley de Fick:

65 Integración del cuerpo de conocimiento en el nuevo marco: Biofarmacia
Disolución: Orden 0: Orden 1: Orden fraccionario: Weibull: Higuchi:

66 Integración del cuerpo de conocimiento en el nuevo marco: Biofarmacia
Korsmeyer-Peppas: Hixson-Crowell: Baker-Lonsdale Hopfenberg: Initial burst:

67 Integración del cuerpo de conocimiento en el nuevo marco: Biofarmacia
Absorción: Primer orden Absorción distribuida espacialmente

68 Integración del cuerpo de conocimiento en el nuevo marco: Farmacocinética
Aclaramiento hepático Aclaramiento renal Recambio Escalado alométrico

69 Integración del cuerpo de conocimiento en el nuevo marco: Farmacocinética
Saturación enzimática Inducción o inhibición enzimática

70 Integración del cuerpo de conocimiento en el nuevo marco: Farmacocinética
Flujo sanguineo Unión a proteína Modelos con metabolitos

71 Integración del cuerpo de conocimiento en el nuevo marco: Farmacocinética
Velocidad de reacción

72 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Unión a un receptor Unión a varios receptores

73 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Unión simultanea de varios ligandos a un receptor Unión secuencial de varios ligandos a un receptor

74 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Unión competitiva: antagonista competitivo, agonista completo y agonista parcial Unión mediante activación o inhibición del receptor

75 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Unión no competitiva

76 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Unión de enantiómeros Unión inespecífica

77 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Modelos genéricos Lineal: Log-lineal: Saturación: Sigmoidal: Gompertz: Logística:

78 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Richards: Morgan-Mercer-Flodin: Weibull: Hiperbólica: Compuesto: Interacción entre fármacos:

79 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Recambio Link models Link model: el efecto se hace desde un compartimento periférico

80 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Transducción y compartimentos de tránsito Tolerancia y rebote

81 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Tolerancia a través de un mediador Tolerancia a través de un precursor

82 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Tolerancia a través de un antagonista

83 Integración del cuerpo de conocimiento en el nuevo marco: Farmacodinamia
Respuesta fisiológica discreta

84 Contenidos Introducción Objetivos Metodología Resultados Conclusiones

85 Resultados: Ajuste simultaneo (Griseofulvina)
Antifúngico

86 Resultados: Parámetros variables en el tiempo (Vancomicina)

87 Resultados: Rebote (Hormona Adrenocorticotrópica)

88 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Biofarmacia: Liberación según Korsmeyer-Peppas

89 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Biofarmacia: Distribución a lo largo del intestino

90 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Biofarmacia: Cantidad absorbida y biodisponibilidad

91 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Farmacocinética: 1 compartimento central y 2 periféricos Farmacodinamia: Efecto sobre el flujo sanguíneo

92 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Biofarmacia: Cantidad absorbida y biodisponibilidad Farmacocinética: Cantidad absorbida y biodisponibilidad Farmacodinamia: Efecto sobre el flujo sanguíneo

93 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Simulación

94 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Identificación de sistemas

95 Resultados: Biofarmacia+Farmacocinética+Farmacodinamia
Planificación terapéutica 6.45 mmol/5.84h → 6.51 mmol/6h

96 Contenidos Introducción Objetivos Metodología Resultados Conclusiones

97 Conclusiones Se ha definido una metodología general para el análisis de datos en biofarmacia, farmacocinética, y farmacodinamia. Esta metodología parte de un sistema de ecuaciones diferenciales que es discretizado e implementado de forma numérica. Se ha prestado especial atención a la precisión y estabilidad del sistema. Se han explorado los aspectos de sensibilidad y selección del periodo de muestreo en el marco propuesto. Se han definido algunas limitaciones de la aproximación tradicional a la luz de la nueva metodología.

98 Conclusiones El marco propuesto permite estimar la incertidumbre para cualquier tipo de distribución de errores y modelo del sistema. El marco propuesto no necesita estimaciones iniciales de parámetros muy precisas, permite manejar parámetros poblacionales, y parámetros variables con el tiempo. También permite el uso de diferentes tipos de vías de administración y métodos de medida. Se ha integrado en el nuevo marco el grueso del cuerpo de modelos de biofarmacia, farmacocinética y farmacodinamia. La nueva metodología permite integrar en un único problema las tres disciplinas.

99 Conclusiones Se ha desarrollado una infraestructura en Matlab y C que permite desarrollar muy rápidamente un nuevo modelo. Se han mostrado aplicaciones en simulación, identificación de sistemas, diseño de tiempos óptimos de muestreo, y diseño de la posología.

100 Preguntas


Descargar ppt "A signal processing approach to Pharmacokinetics, Pharmacodynamics and Biopharmaceutics Data Analysis Carlos Óscar Sorzano Sánchez Directores: Dr. Antonio."

Presentaciones similares


Anuncios Google