Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porMarguerita Chavana Modificado hace 10 años
1
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 – http://www.grc.upv.es/docencia/tra/ Tema 1: Redes de acceso a Internet. Estructura de Internet MPLS Tecnologías cableadas Digital Subscriber Line (xDSL) Cable Broadband Service Broadband Over Power Lines Fiber Tecnologías inalámbricas Satellite Wireless 3G
2
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 A “nuts and bolts” view of a network Millions of connected computing devices: hosts, end-systems pc’s workstations, servers PDA’s phones, toasters running network apps communication links fiber, copper, radio, satellite routers: forward packets (chunks) of data thru network protocols: control sending, receiving of msgs TCP, IP, and HTTP, FTP, PPP, … 2 local ISP company network regional ISP router workstation server mobile
3
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 A closer look at the network structure 1.The network edge: applications and hosts 2.The network core: routers network of networks 3.The access networks and physical media: communication links 3
4
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Internet structure: network of networks Roughly hierarchical National/international backbone providers (NBPs) e.g. BBN/GTE, Sprint, AT&T, IBM, UUNet interconnect (peer) with each other privately, or at public Network Access Point (NAPs) A point of presence (POP) is a machine that is connected to the Internet. Internet Service Providers (ISPs) provide dial-up or direct access to POPs. regional ISPs connect into NBPs local ISP, company connect into regional ISPs 4 NBP A NBP B NAP regional ISP local ISP local ISP
5
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Network Access Points (NAPs) 5 Source: Boardwatch.com Note: Peers in this context are commercial backbones.
6
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 MCI/WorldCom/UUNET Global Backbone 6 Source: Boardwatch.com
7
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 The situation in Europe 7 See: http://www.redes.upv.es/ralir/en/MforS/GEANT2.WMVhttp://www.redes.upv.es/ralir/en/MforS/GEANT2.WMV Also: http://video.google.com/googleplayer.swf?docId=-4949195951027294198&hl=en-GBhttp://video.google.com/googleplayer.swf?docId=-4949195951027294198&hl=en-GB More about technolgies: http://video.google.com/googleplayer.swf?docId=-4634094763983277329&hl=en-GBhttp://video.google.com/googleplayer.swf?docId=-4634094763983277329&hl=en-GB
8
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Hierarchical Routing aggregate routers into regions, “autonomous systems” (AS) routers in same AS run same routing protocol “intra-AS” routing protocol routers in different AS can run different intra-AS routing protocol Gateway router Direct link to router in another AS 4-84-8
9
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 4-9 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b Intra-AS Routing algorithm Inter-AS Routing algorithm Forwarding table 3c Interconnected ASes forwarding table configured by both intra- and inter-AS routing algorithm intra-AS sets entries for internal dests inter-AS & intra-As sets entries for external dests
10
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Intra-AS Routing also known as Interior Gateway Protocols (IGP) most common Intra-AS routing protocols: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco proprietary) 4 - 1010
11
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Internet inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: Obtain subnet reachability information from neighboring ASs. Propagate reachability information to all AS-internal routers. Determine “good” routes to subnets based on reachability information and policy. allows subnet to advertise its existence to rest of Internet: “I am here” 4 - 1111
12
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Why MPLS? Integrate best of Layer 2 and Layer 3 -Intelligence of IP Routing - performance of high-speed switching -Legacy service transport -QoS -VPN Semantics -Link layers include: -Ethernet, PoS, ATM, FR Note: MPLS and IP could be optimal solution for overall IP Services Architecture.
13
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 MPLS as a Foundation for Value Added Services VPNs MPLS Traffic Engineering Traffic Engineering IP+ATM Network Infrastructure IP+Optical GMPLS IP+Optical GMPLS Any Transport Over MPLS Any Transport Over MPLS
14
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 General Context In Core: Forward using labels (as opposed to IP addr) Label indicates service class and destination Label Switch Router (LSR) Label Distribution Protocol (LDP/TDP, RSVP,BGP) Edge Label Switch Router At Edge (ingress): Classify packets Label them At Edge (egress): Remove Label ( PE) – Provider Edge ( P) – Provider ( CE) – Customer Edge ( PE) – Provider Edge
15
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Control and Forward Plane Separation LFIBRouting Process MPLS Process RIBLIBFIB Route Updates/ Adjacency Label Bind Updates/ Adjacency IP TrafficMPLS Traffic Control Plane Data Plane
16
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 MPLS Example: Routing Information 128.89 1 0 1 0 Routing Updates (OSPF, EIGRP, …) You Can Reach 128.89 and 171.69 Thru Me You Can Reach 171.69 Thru Me You Can Reach 128.89 Thru Me In Label Address Prefix 128.89 171.69 1 1 Out I’face Out Label In Label Address Prefix 128.89 171.69 0 1 Out I’face Out Label In Label Address Prefix 128.890 Out I’face Out Label ……………… 171.69
17
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 MPLS Example: Assigning Labels 128.89 1 0 1 0 Label Distribution Protocol (LDP) (downstream allocation) Use Label 4 for 128.89 and Use Label 5 for 171.69 Use Label 7 for 171.69 In Label Address Prefix 128.89 171.69 1 1 Out I’face Out Label In Label Address Prefix 128.89 171.69 0 1 Out I’face Out Label In Label Address Prefix 128.890 Out I’face Out Label -9 ……………………………… 9 7 4 5 4 5 - - 171.69 Use Label 9 for 128.89
18
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 In Label Address Prefix 128.89 171.69 1 1 Out I’face Out Label ………… 4 5 - - MPLS Example: Forwarding Packets Label Switch Forwards Based on Label In Label Address Prefix 128.89 171.69 0 1 Out I’face Out Label ………… 9 7 4 4 5 In Label Address Prefix 128.890 Out I’face Out Label -9 ………… Data128.89.25.4Data 128.89.25.4Data 128.89 1 0 1 0 128.89.25.4 4 4 9 9 MPLS network egress point 128.89.25.4Data
19
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Un ejemplo: ONO 19
20
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Un ejemplo: ONO 20
21
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Un ejemplo: ONO 21
22
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 – http://www.grc.upv.es/docencia/tra/ Tecnologías cableadas de acceso
23
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Implantación de las diversas tecnologías 23
24
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 What is xDSL DSL: Digital Subscriber Line DSL as a transmission technology using the existing copper wires between a central exchange and a customer with a bit rate speed up to 26 Mbit/s Signals: symmetrical/asymmetrical, digital, text, audio, video Concepts of local loop, management, handshake, interoperability, scalability, legacy 24
25
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Why x-DSL Faster than analog (56 kbit/s) and ISDN (>128 kbit/s) modems, reasonable cost, reach 3-6 km Less expensive that E1/T1 systems, 1.5-2.0- Mbit/s, reach 1 km Use already existing copper pairs (depending on the performance): start as equipments installed. Transforms potential 700 millions copper wires installed worldwide into multimegabit data pipes Scenario convenient to providers and users immediately available Enable the management of different providers of different services to different users tipology Alternative: Optical access Wait for full availability current cost better performance 25
26
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 How it works Remove line components limiting the bandwidth to the voice frequency (4 KHz = 64 Kbit/s) Use of copper low attenuation frequencies sending more bits x Hertz for longer reach Use higher bit rate with a low increase of signal rate (baud) in the line Use of line codes allowing the transmission of 2 to 15 bits x Hertz (up to 1.1, 2.2, 12 MHz) Adoption of techniques/phylosophies limiting negative effects (crosstalk, echo, spectrum, etc.) 26
27
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 27 Bucle de abonado (conexión ADSL) Red telefónica DSLAM (ATU-C) Router-modem ADSL (ATU-R) Ethernet 10BASE-T VPI 18, VCI 23, PCR 256/128 Kb/s VPI 18, VCI 31, PCR 512/256 Kb/s VPI 18, VCI 37, PCR 2048/300 Kb/s Circuito permanente ATM Enlace ATM OC-3 (155 Mb/s) Red ATM 192.76.100.1/25 192.76.100.7/25 192.76.100.12/25 192.76.100.15/25 Internet Arquitectura de una red ADSL
28
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 28 Usuario Final Red de acceso Backbone Operador Proveedor de contenidos Física Enlace Red Transporte ADSL ATM AAL5 PPP IP TCP/UDP Red ATM DSLAMRouter Servidor HTTP, etc.AplicaciónHTTP, etc. Protocolos utilizados en ADSL
29
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 DSLAM Digital subscriber line access multiplexer A Digital Subscriber Line Access Multiplexer (DSLAM) allows telephone lines to make faster connections to the Internet. It is a network device, located near the customer's location, that connects multiple customer Digital Subscriber Lines (DSLs) to a high-speed Internet backbone line using multiplexing techniques. By locating DSLAMs at locations remote to the telephone company central office (CO), telephone companies are now providing DSL service to consumers who previously did not live close enough for the technology to work. 29
30
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 ADSL G.Lite (ITU G.992.2) ADSL requiere instalar en casa del usuario un filtro de frecuencias o ‘splitter’ (teléfono de ADSL). El splitter aumenta el costo de instalación y limita el desarrollo. ADSL G.Lite suprime el splitter. También se llama ADSL Universal, ADSL ‘splitterless’ o CADSL (Consumer ADSL). Sin splitter hay más interferencias, sobre todo a altas frecuencias. 30
31
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 ADSL2 versus ADSL (G.992.3 x G.992.1) 2nd generation of ADSL with improvements on: Loop-reach increase for equivalent bit rates (300m) Higher down/up bit rates loop diagnostics Adjustable spectrum shaping during operat/initializ Power vs traffic control: L0(full),L1, L2 robustness against loop impairments and RFI Improved multivendor interoperability Improved application support for an all digital mode of operation and voice over ADSL operation; 31
32
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 ADSL 2+ : G.992.5 Performance Increase downstream: to 16 Mbit/s Maybe increase in upstream (Oct. 2003) Increase reach (1.5 - 3 Km) ADSL+ doubles the bandwidth (from 1.1 to 2.2 MHz) with a significant increase of data rates on short loops Backwards compatibility (needs G.992.3) 32
33
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 VDSL (Very high speed DSL) Es el ‘super-ADSL’. Permite capacidades muy grandes en distancias muy cortas. Las distancias y caudales en sentido descendente son: 300 m51,84 – 55,2 Mb/s 1000 m25,92 – 27,6 Mb/s 1500 m12,96 – 13,8 Mb/s En ascendente se barajan tres alternativas: 1,6 – 2,3 Mb/s 19,2 Mb/s Igual que en descendente (simétrico) 33
34
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Cable Broadband Service Developed for TV distribution Evolved to provide TV/Data/Voice Up to 15 Mbs download; 2 Mbs upload Distance independent Register w/ FCC 34 Cable Modem
35
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Hybrid Fiber/Coax (HFC) CATV Network 35
36
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Residential access networks: cable modems 36 Diagram: http://www.cabledatacomnews.com/cmic/diagram.html
37
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Gigabit Passive Optical Network (GPON) Fiber to the Home Architecture 37 Central Office Typically up to 20 km (28 dB) Passive Outside Plant 2.5 Gbps @ 1490 nm 1.2 Gbps @ 1310 nm splitters points Optional 1,550 nm to support local analog/digital video if required Softswitch (for voice) Edge router (data, video) Optical Line Terminal (OLT) Single family homes Multi-dwelling units Small/medium enterprises Optical Network Terminal (ONT) Source: Fiber to the Home Council
38
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Objetivos Soporte de todos los servicios: voz (TDM, tanto SONET como SDH), Ethernet (10/100 BaseT), ATM,… Alcance máximo de 20 Km, aunque el estándar se ha preparado para que pueda llegar hasta los 60 km. Soporte de varios bitrate con el mismo protocolo, incluyendo velocidades simétricas de 622 Mb/s, 1.25 Gb/s, y asimétricas de 2.5 Gb/s en el enlace descendente y 1.25 Gb/s en el ascendente. El número máximo de usuarios que pueden colgar de una misma fibra es 64 (el sistema está preparado para dar hasta 128). 38
39
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Futuro de GPON GPON no requiere de dispositivos electrónicos u opto- electrónicos activos para la conexión entre el abonado y el operador, y por lo tanto supone una inversión y unos costes de mantenimiento menores La mayoría de los grandes operadores actuales se han decantado por la tecnología GPON. En 2007 muchas operadoras han realizado “pruebas piloto” con pocos usuarios. El objetivo de estas pruebas es empezar a vislumbrar las dificultades de trabajar la fibra óptica. A lo largo de 2008 se espera el lanzamiento “masivo” de servicios sobre GPON. 39
40
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Broadband Over Power Lines 40 Power Line Interface Device Located In Home High Voltage Medium VoltageLow Voltage LV Distribution Transformer Access BPL Power Generatio n Plant Substation Aggregation Point Internet ~ MVolts ~ 1kVolts to 40 kVolts ~ 120/240 Volts Repeater Coupler Backhaul Point (Gateway ) BPL signals are extracted here & converted into/from traditional communication packets for appropriate communication direction In some Access implementations, these physical links are replaced by wireless links
41
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Tecnología PLC: Principios básicos 41 Red de Acceso PLC Repetidor (Instalado en el Cuarto de Contadores) HE: Equipo PLC en CT Terminal (Instalado en Casa de Cliente) CT 2 CT 3 CT 4 CT 5 CT 6 CT n CT 1 Punto Interconexión Conexión a otros operadores Termin al 100 – 300 hogares HE Repetidor Media Tensión (MT) Baja Tensión (BT) CT: Centro de Transformación MT/BT La Red Eléctrica es un medio hostil para la transmisión de datos: derivaciones, malas conexiones, ruido, impedancia variable... Modulaciones robustas: DSSS, GMSK, OFDM No existe ningún estándar, sino un grupo de sistemas diferentes e incompatibles entre sí Velocidades de transmisión de hasta 200 Mbps compartidos entre los usuarios, y dependiendo de la configuración Enchufe eléctrico (Toma única de alimentación, voz y datos.) Permite seguir prestando el suministro eléctrico sin ningún problema Simetría del ancho de banda Principios básicos Una idea sencilla: Acondicionar la red eléctrica para la transmisión simultánea de las señales de baja frecuencia (50/60 Hz) para transmisión de energía y alta frecuencia (1-40 MHz) para transmisión de datos
42
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 El uso de la red eléctrica existente: La principal ventaja de la tecnología PLC y su máximo condicionante 42 Permite gestión y control en Tiempo Real Bi-direccional Aprovecha la infraestructura eléctrica: Alta disponibilidad (Red de MT mallada) Mejora mantenimiento preventivo (medio físico compartido) Rapidez de instalación Coste moderado Total independencia de: Obra Civil y licencias Licencias radio Interferencias Operadores TELCOM (Internos / Externos) Ventajas Variable en el tiempo Ruido elevado Altas atenuaciones Múltiples reflexiones Desventajas Densidad Espectral de Media Tensión Tecnología PLC: Principios básicos
43
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 – http://www.grc.upv.es/docencia/tra/ Tecnologías inalámbricas de red
44
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Basics of Satellites Two Stations on Earth want to communicate through radio broadcast but are too far away to use conventional means. The two stations can use a satellite as a relay station for their communication One Earth Station sends a transmission to the satellite. This is called a Uplink. The satellite Transponder converts the signal and sends it down to the second earth station. This is called a Downlink.
45
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Basics: Advantages of Satellites The advantages of satellite communication over terrestrial communication are: The coverage area of a satellite greatly exceeds that of a terrestrial system. Transmission cost of a satellite is independent of the distance from the center of the coverage area. Satellite to Satellite communication is very precise. Higher Bandwidths are available for use.
46
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Basics: Disadvantages of Satellites The disadvantages of satellite communication: Launching satellites into orbit is costly. Satellite bandwidth is gradually becoming used up. There is a larger propagation delay in satellite communication than in terrestrial communication.
47
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Basics: How Satellites are used Service Types Fixed Service Satellites (FSS) Example: Point to Point Communication Broadcast Service Satellites (BSS) Example: Satellite Television/Radio Also called Direct Broadcast Service (DBS). Mobile Service Satellites (MSS) Example: Satellite Phones
48
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Types of Satellites Satellite Orbits GEO LEO MEO Molniya Orbit HAPs Frequency Bands
49
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Geostationary Earth Orbit (GEO) These satellites are in orbit 35,863 km above the earth’s surface along the equator. Objects in Geostationary orbit revolve around the earth at the same speed as the earth rotates. This means GEO satellites remain in the same position relative to the surface of earth. Advantages A GEO satellite’s distance from earth gives it a large coverage area, almost a fourth of the earth’s surface. GEO satellites have a 24 hour view of a particular area. These factors make it ideal for satellite broadcast and other multipoint applications. Disadvantages A GEO satellite’s distance also cause it to have both a comparatively weak signal and a time delay in the signal, which is bad for point to point communication. GEO satellites, centered above the equator, have difficulty broadcasting signals to near polar regions
50
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Frequency Bands Different kinds of satellites use different frequency bands. L–Band: 1 to 2 GHz, used by MSS S-Band: 2 to 4 GHz, used by MSS, NASA, deep space research C-Band: 4 to 8 GHz, used by FSS X-Band: 8 to 12.5 GHz, used by FSS and in terrestrial imaging, ex: military and meteorological satellites Ku-Band: 12.5 to 18 GHz: used by FSS and BSS (DBS) K-Band: 18 to 26.5 GHz: used by FSS and BSS Ka-Band: 26.5 to 40 GHz: used by FSS
51
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Satellite: an example Ofertas de Telefónica España Ofertas 51
52
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 La llegada del 3G Higher bandwidth enables a range of new applications!! For the consumer Video streaming, TV broadcast Video calls, video clips – news, music, sports Enhanced gaming, chat, location services… For business High speed teleworking / VPN access Sales force automation Video conferencing Real-time financial information 52
53
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 GSM evolution to 3G 53 GSM 9.6kbps (one timeslot) GSM Data Also called CSD GSM General Packet Radio Services Data rates up to ~ 115 kbps Max: 8 timeslots used as any one time Packet switched; resources not tied up all the time Contention based. Efficient, but variable delays GSM / GPRS core network re-used by WCDMA (3G) GPRS HSCSD High Speed Circuit Switched Data Dedicate up to 4 timeslots for data connection ~ 50 kbps Good for real-time applications c.w. GPRS Inefficient -> ties up resources, even when nothing sent Not as popular as GPRS (many skipping HSCSD) EDGE Enhanced Data Rates for Global Evolution Uses 8PSK modulation 3x improvement in data rate on short distances Can fall back to GMSK for greater distances Combine with GPRS (EGPRS) ~ 384 kbps Can also be combined with HSCSD WCDMA
54
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Quick Recap of 2G systems: Radio Interfaces Different in air interfaces Modulation and signaling eg- GSM 900 Uplink: 890-915 MHz Downlink: 935-960 MHz 25MHz -> 124 carrier frequencies, spaced 200kHz apart One or more frequencies per base station ~270 kbps per carrier, divided into 8 channels = ~33kbps per channel 54 IS-54B IS-136 GSM IS-95 IS-95B WCDMA AMPS TACS NMT
55
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 2G GSM – Core Network (Voice) 55 TDM ISUP/SS7 PSTN AUC HLR SCP SIM BTS BSC Signaling System No. 7 (SS7) Packet signaling network Mobile Switching Center (MSC) Phone switch plus: mobile registration call routing inter MSC handovers location updating CDR creation SS7 to PSTN VLR EIR AuC – Auth. center EIR – Equip ID register SCP – Service control point Home Location Register (HLR) information of each subscriber, type, service Current location of the subscriber Logically 1 HLR per GSM network Visitor Location Register (VLR) selected information from the HLR for all mobiles in MSC area Often bundled with MSC (VLR domain tied in with MSC coverage) Queries assigned HLR UmAbisA
56
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 BSC Depending on supplier, and design, urban or rural. About 2-4 BSCs for each MSC About MSC per 200K subscribers Many variables 2G GSM – Mobile Switching Center 56 MSC Connects to the fixed network (SS7) Like a normal PSTN/ISDN switch with added mobile functionality: Registration Authentication Location updating Handovers Integrates VLR Call routing to roaming sub…
57
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 GPRS…. What is it? General Packet Radio Service 2.5G data service overlaid on an existing GSM network Mobile station uses up to 8 timeslots (channels) for GPRS data connection from Mobile Station Timeslots are shared amongst users (and voice) Variable performance… Packet Random Access, Packet Switched Slotted Aloha Reservation / Contention handling Throughput depends on coding scheme, # timeslots etc From ~ 9 kbps min to max. of 171.8 kbps (in theory!) 57
58
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 GPRS: General Packet Radio Service 58 TDM PSTN AUC HLR SCP SIM BTS BSC Packet Control Unit (PCU) Forward data frames from TDM BSS to packet core New hardware in BSC Serving GPRS Support Node (SGSN) Packet transfer to, from serving area Registration, authentication, mobility management / handover, CDRs logical links to BTS, tunnel to GGSN Gateway GPRS Support Node (GGSN) Gateway to external IP networks (VPN/ISP etc) IP network security GPRS session mgmt, AAAA CDRs for charging Packet Switched Core Circuit Switched UmAbisA & PCU IP Internet Corporate FR Gb Gn Gi
59
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 EDGE… also known as 2.75G EDGE Enhanced Data Rates for Global Evolution Uses 8-PSK modulation in good conditions Increase throughput by 3x (8-PSK – 3 bits/symbol vs GMSK 1 bit/symbol) Fall back to GMSK modulation when far from the base station Combine with GPRS: EGPRS; up to ~ 473 Kbps. NB: GPRS & EGPRS can share time slots New handsets / terminal equipment; additional hardware in the BTS Core network and the rest remains the same TDMA (Time Division Multiple Access) frame structure 200kHz carrier bandwidth allows cell plans to remain Initially no QoS; later GSM/EDGE Radio Access Network (GERAN) QoS added EDGE access develops to connect to 3G core 59
60
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 3G Standards groups for UMTS/WCDMA 3G development work has been driven by ETSI, UMTS Forum WCDMA is the main 3G radio interface (driven initially by DoCoMo) 3GPP = 3G Partnership Program Produces specs for 3G system based on ETSI UTRA (Universal Terrestrial Radio Access Interface) Also develops further enhancements for GSM/GPRS/EDGE Several org partners including ETSI, CWTS – China Wireless Telecommunications Standards www.3gpp.org – eg- Juniper is an active member and contributor www.3gpp.org 60
61
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Mobile Networks Evolution 61 GPRS EDGE UMTS HSDPA 2G 3G 1995 2015 4G 2005 Download Speed 1-10 Mbps 250-384 kbps 90-180 kbps 40 kbps
62
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 3G = new network 62 GSM HLR GSM/GPRS Radio network BSC 2G MSC External voice network GMSC Packet switched Core network External IP network GGSN PCU 2G SGSN GPRS UMTS/HSDPA Radio network RNC UMTS/ HSDPA 3G MSC 3G SGSN Circuit switched Core network
63
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 …and Beyond Technology Convergence on OFDM (Orthogonal Frequency Division Multiple Access) WIMAX Standardized by IEEE 802.16, evolution of 802.11 (Wi-Fi) Improved bandwidth, encryption and coverage over WiFi Theoretical peak data rates of 70Mbps (practical peak ~2Mbps) Improved QoS better enables applications such as VoIP or IPTV Ideal application is for “last mile” connectivity to the home or business Intel plans to embed WiMAX chips as part of ‘Intel Inside’ L3GTE/HSOPA Early standardization work starts in 3GPP R8 Improved bandwidth, latency over UMTS/HSxPA Radio technology based on MIMO-OFDM, peak data rates of up to 70Mbps Network simplification 63
64
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 Cellular/Fixed: Worlds Converge 64 Coverage/Mobility Data Speeds (Kbps) span a wide range 100,000 10 802.11n (smart antennas) 802.11 with Mesh extns. 802.16e (Mobile) Local Area Fixed Wide Area Mobile Metro Area Nomadic 802.16 (Fixed LOS) Cellular Industry Fixed Wireless Industry 802.16a/d (Fixed NLOS) EV-DO DO+, EV-DV DV+ HSDPA Enhanced UL (R6/R7) 3.5G 2G 4G Air Interfaces Fixed Wireless Industry 2.5G 3G 802.11 b/a/g Mobile Broadband HSDPA TDD
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.