La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

FUNCIONES ELEMENTALES

Presentaciones similares


Presentación del tema: "FUNCIONES ELEMENTALES"— Transcripción de la presentación:

1 FUNCIONES ELEMENTALES
Tema 9 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

2 CORTES CON LOS EJES Y SIGNO
Tema * 1º BCT @ Angel Prieto Benito Apuntes 1º Bachillerato CT

3 Apuntes 1º Bachillerato CT
CORTES CON LOS EJES Los puntos de corte de la función f con el eje X se calculan resolviendo la ecuación f(x)=0 Si f(x) es una expresión polinómica de grado impar, habrá al menos un punto de corte con el eje X. El punto de corte de la función f con el eje Y es el punto (0, f(0)). Como máximo hay un punto de corte con el eje Y, ya que si no, f no sería función. Ejemplo Ejemplo 2 f(x) = x3 –3x f(x) = - x3 + 4x f(0) = 2  Pc(0,2) f(0) = 0  Pc(0,0) 0 = x3 –3x = - x3 + 4x Factorizando por Ruffini: Factorizando por Ruffini: f(x) = (x + 2)(x – 1)(x – 1) f(x) = - x (x + 2)(x – 2) Pc(– 2, 0), Pc(1, 0), Pc(1, 0) Pc(0,0) , Pc(– 2, 0), Pc(2, 0) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

4 Apuntes 1º Bachillerato CT
CORTES CON LOS EJES Ejemplo Ejemplo 4 x – – x2 f(x) = f(x) = x x Cortes con eje Y: Cortes con eje Y: f(0) = – 3  Pc(0,– 3) f(0) = 1/0 =oo  NO HAY Cortes con eje X: Cortes con eje X: 0 = (x –3) / (x +1) = (1 – x2 ) / x (x + 1).0 = (x – 3) x.0 = (1 – x2 ) 0 = (x – 3) = (1 – x2 ) 3 = x  Pc(3, 0) x2 = 1  Pc(– 1,0) , Pc(1, 0) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

5 Gráficas de los ejemplos
(0,2) (-2,0) (2,0) (-2,0) (1,0) (0,0) (3,0) (-1,0) (1,0) (0, -3) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

6 Apuntes 1º Bachillerato CT
SIGNO DE UNA FUNCIÓN Para representar gráficamente una función nos interesa saber en qué zonas o intervalos la función va por encima o por debajo del eje X. Los puntos de corte de la función f con el eje X, así como los puntos que no forman parte del dominio de la función, nos limitan las zonas a estudio. Si en un punto c del intervalo (a,b) la ordenada o valor de f (c) es positivo ( o negativo) , es también positivo ) o negativo) en todos los puntos del intervalo. Ejemplo Ejemplo 2 f(x) = x3 –3x f(x) = - x3 + 4x Intervalos a estudio: Intervalos a estudio: (-oo,-2), (-2, 1) y (1, oo) (-oo, -2), (-2, 0), (0, 2) y (2, oo) f(-3) =– = – en (-oo, -2) f(-3) = = + en (-oo, -2) f(0) = 0 – = + en (-2, 1) f(-1) = 1 – 4 = – en (-2, 0) f(2) = 8 – = + en (1, oo) f(1) = – = + en (0, 2) f(3) = – = – en (-oo, -2) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

7 Apuntes 1º Bachillerato CT
SIGNO DE UNA FUNCIÓN Ejemplo Ejemplo 4 x – – x2 f(x) = f(x) = x x Intervalos a estudio: Intervalos a estudio: (-oo, -1), (-1,3) y (3,oo) (-oo,-1), (-1,0), (0, 1) y (1, oo) f(-3) = – 6 / - 2 = + en (-oo, -1) f(-3) = -8 / - 3 = + en (-oo, -1) f(0) = – 3 / 1 = – en (-1, 3) f(-0,5) = 0,75 / – 0,5 = – en (-1, 0) f(4) = 1 / 5 = + en (3, oo) f(0,5) = 0,75 / 0,5 = + en (0, 1) f(2) = – 3 / 2 = – en (1 , oo) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

8 Gráficas de los ejemplos
(0,2) (-2,0) (2,0) (-2,0) (1,0) (0,0) (3,0) (-1,0) (1,0) (0, -3) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

9 Apuntes 1º Bachillerato CT
SIMETRÍA Tema * 1º BCT @ Angel Prieto Benito Apuntes 1º Bachillerato CT

10 Apuntes 1º Bachillerato CT
SIMETRÍAS SIMETRÍAS Sea la función y = f(x). Si se cumple que f(x) = f(-x)  Hay SIMETRÍA PAR Significa que la función es simétrica respecto al eje de ordenadas , eje Y. El eje Y es eje de simetría de la función. Si se cumple que f(x) = - f(-x)  Hay SIMETRÍA IMPAR Significa que la función es simétrica respecto al origen de coordenadas. Lo dibujado en el primer cuadrante es idéntico a lo del tercer cuadrante. (Es la simetría respecto a un punto que se vió en 3º ESO) @ Angel Prieto Benito Apuntes 1º Bachillerato CT

11 Apuntes 1º Bachillerato CT
Ejemplo 1 SIMETRÍA PAR f(x) = x2 f(x) = x2. Veamos si se cumple que; f(x) = f(-x) f(x) = x2 f(-x) = (-x)2 = x2  Hay SIMETRÍA PAR Lo mismo sucedería con: f(x) = x2 – 3 f(x) = x2 + 5 Pero no con: f(x) = x2 – 3.x f(x) = 2.x – 5 TABLA x y 1 4 y @ Angel Prieto Benito Apuntes 1º Bachillerato CT

12 Apuntes 1º Bachillerato CT
Ejemplo 2 f(x) = x4 – x2 Veamos si se cumple que; f(x) = f(-x) f(-x) = (-x)4 – (-x)2 f(-x) = x4 – x2  Hay SIMETRÍA PAR Lo mismo sucedería con: f(x) = x4 + 3 x2 f(x) = 2x6 + 5x2 – 3 Pero no con: f(x) = x4 – 3.x f(x) = 4x3 – 5x2 + 4 SIMETRÍA PAR f(x) = x4 – x2 TABLA x y -0,5 -0,19 0,5 -0,19 12 y @ Angel Prieto Benito Apuntes 1º Bachillerato CT

13 Apuntes 1º Bachillerato CT
Ejemplo 3 f(x) = x3. Veamos si se cumple que; f(x) = - f(-x) f(x) = x3 f(-x) = (-x)3 = - x3 - f(-x) = - (- x3 )= x3  Hay SIMETRÍA IMPAR Lo mismo sucedería con: f(x) = x3 – 3.x f(x) = x3 + 5.x Pero no con: f(x) = x3 + 2.x2 f(x) = x3 – 5 SIMETRÍA IMPAR f(x) = x3 TABLA x y 1 8 O @ Angel Prieto Benito Apuntes 1º Bachillerato CT

14 Apuntes 1º Bachillerato CT
Ejemplo 4 f(x) = 4 / x Veamos si se cumple que; f(x) = - f(-x) f(-x) = 4 / (- x) = - 4 / x - f(-x) = - (- 4 / x)= 4 / x  Hay SIMETRÍA IMPAR Lo mismo sucedería con: f(x) = – 6 / x f(x) = 12 / x Pero no con: f(x) = 4 ( x + 2) f(x) = – 6 / (x – 3) SIMETRÍA IMPAR 4 f(x) = ----- x TABLA x y 4 2 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

15 Apuntes 1º Bachillerato CT
Ejemplo Ejemplo 4 SIMETRÍA SIMETRÍA x = y NO ES UNA FUNCIÓN NO ES UNA FUNCIÓN y y x x @ Angel Prieto Benito Apuntes 1º Bachillerato CT


Descargar ppt "FUNCIONES ELEMENTALES"

Presentaciones similares


Anuncios Google