La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito

Presentaciones similares


Presentación del tema: "Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito"— Transcripción de la presentación:

1 Tema 8 FUNCIONES, LÍMITES Y CONTINUIDAD @ Angel Prieto Benito
Apuntes 1º Bachillerato CT

2 OPERACIONES CON FUNCIONES
Tema 8.3 * 1º BCT @ Angel Prieto Benito Apuntes 1º Bachillerato CT

3 OPERACIONES CON FUNCIONES
SUMA DE FUNCIONES Sea f(x) y g(x) dos funciones reales de variable real. Llamamos función SUMA y la denotamos así: (f+g)(x) = f(x) + g(x) Para Vxє[Dom f(x) ∩ Dom g(x)] PRODUCTO DE FUNCIONES Llamamos función PRODUCTO y la denotamos así: (f.g)(x) = f(x) . g(x) Para Vx є [Dom f(x) ∩ Dom g(x)] DIVISIÓN DE FUNCIONES Llamamos función DIVISIÓN y la denotamos así: (f/g)(x) = f(x) / g(x) Para Vx є { [Dom f(x) ∩ Dom g(x)] , donde g(x) <> 0 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

4 Apuntes 1º Bachillerato CT
EJEMPLO_1 DE FUNCIÓN SUMA Sea f(x) = x+1 y g(x) = 1 / ( x – 1). Dom f(x) = R , pues para cualquier x є R existe una imagen o valor de f(x) Dom g(x) = R – {1} , pues cuando x=1  g(1) = 1/0 = ∞ , que no existe. Sea (f + g)(x) = f(x) + g(x) = x / ( x – 1) = (x2 – 1 +1) /(x-1) = x2 / (x-1) Como se ve Dom (f+g)(x) = R – {1} , intersección de los dominios. La función suma es posible efectuarla en todo R excepto en x=1 EJEMPLO_2 DE FUNCIÓN SUMA Sea f(x) = √x y g(x) = √-x Dom f(x) = R+ , pues x debe ser positivo para que exista una imagen o valor de f(x) Dom g(x) = R- , pues x debe ser negativo para que exista una imagen o valor de f(x) Sea (f + g)(x) = f(x) + g(x) = √x +√-x Como se ve Dom (f+g)(x) = 0, intersección de los dominios. La función suma sólo existe cuando x=0 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

5 Apuntes 1º Bachillerato CT
EJEMPLO_1 DE FUNCIÓN PRODUCTO Sea f(x) = x – 1 y g(x) = 1 / ( x – 1). Dom f(x) = R , pues para cualquier x є R existe una imagen o valor de f(x) Dom g(x) = R – {1} , pues cuando x=1  f(1) = 1/0 = ∞ , que no existe. Sea (f . g)(x) = f(x) . g(x) = ( x – 1) . 1 / ( x – 1) = (x – 1) / (x - 1) = 1 A pesar de que el resultado, (f.g)(x) = 1) es una constante, independiente de x , el Dom (f .g)(x) = R – {1} , intersección de los dominios. EJEMPLO_2 DE FUNCIÓN PRODUCTO Sea f(x) = √x y g(x) = √ 2 - x Dom f(x) = V x є [1 , +∞) Dom g(x) = V x є (-∞ , 2] Sea (f .g)(x) = f(x) . g(x) = √x-1 .√2-x = √ - x2 + 3x - 2 Como se ve Dom (f+g)(x) = [1, 2], intersección de los dominios. @ Angel Prieto Benito Apuntes 1º Bachillerato CT

6 COMPOSICIÓN DE FUNCIONES
Sea f(x) y g(x) dos funciones reales de variable real. Llamamos función COMPUESTA a alguna de las siguientes expresiones: (f o g)(x) = f [ g (x) ] ,, (g o f)(x) = g [ f (x) ] g f X Z Y g(x) x f(g(x) fog @ Angel Prieto Benito Apuntes 1º Bachillerato CT

7 Apuntes 1º Bachillerato CT
Ejemplo_1 Sea f(x) = 1 / x ,, g(x) = x2 - 1 (f o g)(x) = f [ g (x) ] = 1 / (x2 – 1) (g o f)(x) = g [ f (x) ] = (1 / x) 2 – 1 = (1 / x2) – 1 = ( 1 - x2) / x2 Ejemplo_2 Sea f(x) = √ x ,, g(x) = x2 (f o g)(x) = f [ g (x) ] = √ x2 = x (g o f)(x) = g [ f (x) ] = (√ x)2 = x Son muy pocas las funciones en que se cumpla (f o g)(x) = (g o f)(x) Ejemplo_3 Sea f(x) = sen x ,, g(x) = x2 – 1 (f o g)(x) = f [ g (x) ] = sen (x2 – 1) (g o f)(x) = g [ f (x) ] = (sen x)2 – 1 @ Angel Prieto Benito Apuntes 1º Bachillerato CT

8 Apuntes 1º Bachillerato CT
Ejemplo_4 3 Sea f(x) = √ x ,, g(x) = √ x2 (f o g)(x) = f [ g (x) ] = √ (√ x2 ) = √ x2 = √ x (g o f)(x) = g [ f (x) ] = √ (√ x)2 = √ x Son muy pocas las funciones en que se cumpla (f o g)(x) = (g o f)(x) Ejemplo_5 Sea f(x) = sen x ,, g(x) = x2 – 1 ,, h(x) = √x (f o g o h)(x) = f [ g (h(x)) ] = sen ((√ x)2 – 1) = sen (x – 1) (g o f o h)(x) = g [ f (h(x)) ] = (sen √ x) 2 – 1 A veces entran en juego tres o más funciones para la composición de las mismas. Se han hecho dos de los seis ejemplos posibles. @ Angel Prieto Benito Apuntes 1º Bachillerato CT

9 FUNCIÓN INVERSA DE OTRA
Sea y = f(x) una función real de variable real. Llamamos función INVERSA a la expresión y = f -1 (x) Condición: Si f(a) = b  f -1 (b) = a Relaciones entre una función y su inversa: (f -1 o f )(x) = f -1 [ f (x)] = x (f o f -1 )(x) = f [ f -1 (x) = x Es decir, que (f -1 o f )(x) = (f o f -1 )(x) = x Las gráficas de dos funciones inversas son simétricas respecto a la bisectriz del primer cuadrante, o sea respecto a la recta y = x Una función tiene función inversa sólo si cualquier línea horizontal corta a la gráfica una vez como máximo. @ Angel Prieto Benito Apuntes 1º Bachillerato CT

10 Apuntes 1º Bachillerato CT
Para hallar la función inversa, si la tiene, se despeja la variable x en la ecuación y= f(x) y después se intercambian las x por las y. Ejemplo 1 Sea f(x) = x2 - 1 y = x2 – 1  x = y2 – 1  y2 = x  y = +/- √(x+1) La función resultante No es función, por lo tanto la función dada no tiene inversa. Ejemplo 2 Sea f(x) = 1 / (x – 2) y = 1 / (x – 2)  x = 1 / (y – 2)  x.y – 2.x = 1  y = (1 + 2.x) / x Luego f -1 (x) = (1 + 2.x) / x es la inversa de la función dada. Comprobemos: (f o f -1)(x) = 1 / ([(1 + 2.x) / x] – 2) = x (f -1 o f)(x) = (1 + 2.[ 1 / (x – 2)]) / [1 / (x – 2)] = x @ Angel Prieto Benito Apuntes 1º Bachillerato CT

11 Apuntes 1º Bachillerato CT
Ejemplo 3 Sea f(x) = sen x - 1 y = sen x – 1  x = sen y – 1  sen y = x  y = arc sen (x + 1) Luego f -1 (x) = arc sen (x + 1 ) Comprobemos: (f o f -1)(x) = sen [arc sen (x+1)] – 1 = (x + 1) – 1 = x (f -1 o f)(x) = arc sen (sen x – 1 + 1) = arc sen (sen x) = x Ejemplo 4 Sea f(x) = √ (x – 1) y = √ (x – 1)  x = √ (y – 1)  x 2 = y – 1  y = x2 + 1 Luego f -1 (x) = x2 + 1 Comprobemos: (f o f -1)(x) = √ (x2 + 1 – 1) = √ x2 = x (f -1 o f)(x) = [√ (x – 1)] = x – = x @ Angel Prieto Benito Apuntes 1º Bachillerato CT

12 Apuntes 1º Bachillerato CT
Ejemplos gráficos 1 y 2 y = - 2.x y = 2.x + 1 y = - x / 2 y = (1/2).x - 2 En color rojo f(x) y en color azul f-1(x), o viceversa. @ Angel Prieto Benito Apuntes 1º Bachillerato CT

13 Apuntes 1º Bachillerato CT
Ejemplos gráficos 3 y 4 y = x2 +1 y = ex y = ln x y = √ (x-1) En color rojo f(x) y en color azul f-1(x), o viceversa. @ Angel Prieto Benito Apuntes 1º Bachillerato CT


Descargar ppt "Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito"

Presentaciones similares


Anuncios Google