Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porLupita Benavidez Modificado hace 10 años
1
Funciones Presentado por: Tammy Roterman y Orli Glogower
Presentado a: Patricia Cáceres Décimo Grado
2
Funciones Tipos Definición Formas de expresar Características
Funciones Inyectivas, Sobreyectivas y Biyectivas Funciones Pares e Impares
3
Función Definición Una función es una relación entre un conjunto dado X (el dominio) y otro conjunto de elementos Y (el rango) de manera que a cada elemento x del dominio le corresponda uno y solo un elemento del rango f(x). A cada Pre Imagen le corresponde una sola y solo una Imagen.
4
Formas de expresar una función
Una función se puede expresar de 4 distintas formas: Enunciado Tabla Gráfica Algebraicamente
5
Una función se expresa a través de una tabla, cuando se dan algunos valores de X con los valores correspondientes de Y. Ejemplo: X 2 8 10 12 Y 3 4
6
Una función se expresa a través de un enunciado cuando se describe verbalmente.
Ejemplo: Una función, es la relación entre los elementos del dominio y los del rango.
7
Una función se expresa a través de una formula o expresión algebraica cuando se da una ecuación en la que se relacionan las variables X y Y. Ejemplo: f(x)= 4X2 – 3X + 8 f(x)= 2X + 4 f(x)= X3 + 2X2 – 4X + 3
8
Una función se expresa a través de una gráfica, cuando se representan los pares (x,y) en el plano cartesiano. Ejemplo:
9
Características de las funciones
Variable dependiente Variable independiente Imagen Pre Imagen Dominio Rango Conjunto de salida Conjunto de llegada Punto de corte con X Punto de corte con Y Crecimiento Periodicidad Máximos y mínimos
10
Son los posibles valores del conjunto de llegada
Son los posibles valores del conjunto de llegada. La variable dependiente se llama Y. Son los posibles valores del conjunto de salida. La variable independiente se llama X. Características
11
f a b c 4 Los elementos principales de una función son los posibles valores que pueden tomar ambas variables. Estos valores son llamados Imágenes y Pre Imágenes. Y X Imagen: Los valores del conjunto de llegada que se relacionan con los valores del conjunto de salida. Pre Imagen: Los valores del conjunto de salida que se relacionan con los valores del conjunto de llegada. Características
12
Rango: Conjunto de elementos del conjunto de llegada que están relacionadas con un valor del conjunto de salida. Dominio: Conjunto de elementos del conjunto de salida que están relacionadas con algún elemento del conjunto de llegada. Características
13
Conjunto de Salida: Conjunto de Pre Imágenes.
Conjunto de Llegada: Conjunto de Imágenes. Características
14
Punto de corte con Y: Se halla cuando X=0. Se reemplaza X por 0.
Punto de corte con X: Se halla cuando Y=0. Se iguala la función a 0, o se factorisa. Punto de corte con Y: Se halla cuando X=0. Se reemplaza X por 0. Características
15
Periodicidad: Una función es periódica, si su gráfica se repite en intervalos de amplitud constante. Periodo: Longitud del intervalo que se repite. Máximos y mínimos: Máximo relativo: Es un punto en el que el valor de la función es mayor que en los puntos que están próximos. Mínimo relativo: Es un punto en el que el valor de la función es menor que en los puntos que están próximos. Crecimiento: Función creciente: Es creciente cuando al aumentar los valores de X, aumenta Y. Función decreciente: Es decreciente, cuando al aumentar los valores de X, disminuye Y. Características
16
Funciones Inyectivas: Funciones Sobreyectivas:
Una función es Inyectiva si a cada valor del dominio le corresponde un valor del rango. No puede haber dos o mas elementos del dominio con la misma imagen. Funciones Sobreyectivas: Una función es Sobreyectiva si cada elemento del rango es como mínimo la imagen de un elemento del domino. X Y X Y 1 2 3 4 D B C 1 2 3 D B C A
17
Función Biyectiva: Una función es Biyectiva cuando todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada (inyectiva), sumándole que a cada elemento del conjunto de salida le corresponde un elemento del conjunto de llegada (sobreyectiva). X Y 1 2 3 4 D B C A
18
Se produce una simetría con respecto al eje y.
Función Par: Se llama función par a la que para todo x perteneciente al Domino de la función, se cumple que: Se produce una simetría con respecto al eje y. Ejemplo: f(x)= X2 f(-2)= 4 f(2)= 4 Todas las funciones pares cumplen la ecuación: Función Impar: Se llama función impar a la que para todo x perteneciente al Dominio de la función, se cumple que: Se produce una simetría con respecto al origen de coordenadas. Ejemplo: f(x)= X3 f(2)=8 f(-2)=-8 Todas las funciones impares cumplen la ecuación:
21
Tipos de funciones Por Partes o A Trozos Polinómicas Racional
Exponencial Trigonométricas Logarítmica Valor Absoluto
22
Funciones polinómicas
Grado Par Constante Grado Impar Cuadrática Lineal Cúbica Afín Idéntica
23
Generalidades de una función polinómica
Se llama función polinómica a toda aquella que está definida por medio de polinomios. Según el grado del polinomio, las funciones polinómicas se pueden clasificar en: En el conjunto de las funciones polinómicas pueden definirse los siguientes tipos de operaciones: Suma de dos funciones f (x) y g (x): produce una nueva función (f + g) (x). Producto de una función f (x) por un número l: produce una nueva función (l × f) (x). Producto de dos funciones f (x) y g (x): resulta una nueva función (f × g) (x). Grado Nombre Expresión Constante y= a Lineal y= ax + b Cuadrática y= ax2 + bx + c Cúbica y= ax3 + bx2 + cx + d
24
Elementos Función Constante EJEMPLO
Es una función polinómica de grado cero que no depende de ninguna variable. Se define por la ecuación: y= a Elementos Dominio= IR Rango= a Conjunto de Salida= IR Conjunto de Llegada= IR Punto de corte con x= no existe Punto de corte con y= a EJEMPLO
25
Constante Análisis: y= 6 Dominio-Conjunto de salida= IR
Conjunto de llegada= IR Rango= {6} Punto de corte con y= 6
26
Elementos Función Afín EJEMPLO
La función afín viene dada por la ecuación: y= mx+n Donde X y Y son las variables m es la pendiente n es la ordenada en el origen La m de una recta determina la inclinación de la misma, entonces: Si m<0 decreciente Si m>0 creciente Si m=0 constante m se calcula: Elementos Dominio= IR Conjunto de Salida= IR Rango= IR Conjunto de Llegada= IR Punto de corte con y= n EJEMPLO
27
Afín Análisis: y= 6x +2 Dominio-Conjunto de salida= IR
Rango-Conjunto de llegada= IR Punto de corte con y= 2 Punto de corte con x= -1/3 Pendiente= 6
28
y= ax(2n) + bx(2n)-1 + cx(2n)-2 + … + dx + e
Funciones de grado par Las funciones de grado par son las funciones en las que el mayor grado del polinomio es par. Se definen por la ecuación: y= ax(2n) + bx(2n)-1 + cx(2n)-2 + … + dx + e EJEMPLO
29
grado par y= 2X4 + 4x3 + 6x2 – x + 8
30
Elementos Función Cuadrática EJEMPLO
Es una función polinómica que se define mediante un polinomio de segundo grado como: Es una parábola vertical, orientada hacia arriba o hacia abajo según sea el signo de a. El vértice de una parábola se halla mediante la ecuación: Dominio= IR Rango= (máximo o mínimo relativo, Conjunto de salida= IR Conjunto de llegada= IR Punto/s de corte con x: y= 0, se halla/n mediante la formula cuadrática: Punto de corte con y= c Elementos EJEMPLO
31
Cuadrática Análisis: y= x2 + 3x – 4 Dominio-Conjunto de salida= IR
Rango-Conjunto de llegada= IR Punto de corte con y= -4 Punto de corte con x= {-4, 1} Mínimo relativo= -3/2
32
Funciones de grado impar
Las funciones de grado impar son las funciones en las que el mayor grado del polinomio es impar. Se definen por la ecuación: y= ax(2n-1) + bx(2n-1)-1 + cx(2n-1)-2 + … + dx + e EJEMPLO
33
grado impar y= 3x3 + 2x2 – x + 4
34
Elementos Función Lineal EJEMPLO
Es la función que se define por la ecuación: y= mx Elementos Dominio= IR Rango= IR Conjunto de Salida= IR Conjunto de Llegada= IR Punto de corte con Y= 0 Punto de corte con X= 0 EJEMPLO
35
Lineal Análisis: y= 4x Dominio-Conjunto de salida= IR
Rango-Conjunto de llegada= IR Punto de corte con y= 0 Punto de corte con x= 0 Pendiente= 4
36
Elementos Función Idéntica EJEMPLO
Es la función que asigna como imagen a cada elemento del dominio el mismo elemento. Se define por la ecuación: y= x Su pendiente es m=1 Su gráfica es la recta bisectriz de los cuadrantes primero y tercero. Elementos Dominio= IR Conjunto de Salida= IR Rango= IR Conjunto de Llegada= IR Punto de corte con X y Y= 0 EJEMPLO
37
Idéntica Análisis: y= x Dominio-Conjunto de salida= IR
Rango-Conjunto de llegada= IR Punto de corte con y= 0 Punto de corte con x= 0
38
Elementos Función Cúbica EJEMPLO
Función que tiene la forma, o puede ser llevada a la forma: con a ≠ 0 , a,b,c,d ∈ IR Elementos Dominio= IR Conjunto de Salida= IR Rango= IR Conjunto de Llegada= IR Punto de corte con y= d EJEMPLO
39
Cúbica Análisis: y= x3 + 3x2 + 4x + 6 Domino-Conjunto de salida= IR
Rango-Conjunto de llegada= IR Punto de corte con y= 6 Punto de corte con x= -2.5
40
Referencias de consulta
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.