Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porpablo abad Modificado hace 6 años
1
MEDIDAS DE DISPERSIÓN
2
MEDIDAS DE DISPERSION La Dispersión hace referencia a la forma en que se dispersan o alejan las puntuaciones de una distribución o lista de puntajes MEDIA: 8.5 años
3
MEDIDAS DE DISPERSION RANGO (Símbolo: R) DESVIACIÓN MEDIA (Símbolo Dx) DESVIACION ESTANDAR O TÍPICA (Símbolo σ ó S) VARIANZA ( σ 2 ó S 2 )
4
RANGO El Rango corresponde a la distancia entre el puntaje mayor (llamado valor máximo) y el puntaje menor (llamado valor mínimo) Rango = X Max – X Min
5
La siguiente tabla representa la pérdida de peso en libras, de un grupo de personas que se sometieron a un tratamiento durante el último año Valor Máximo: 60Valor Mínimo: 10 Rango = X Max – X Min = 60 - 10 = 50 3- 5 10 13 22 26 16 23 35 53 17 32 41 35 24 23 27 16 20 60 48 EJEMPLO
6
DESVIACIÓN MEDIA La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media La desviación media se representa por Dx
7
Varianza : Varianza : Corresponde a la Desviación Estándar al cuadrado Desviación Estándar o Típica Desviación Estándar o Típica: Indica cómo se dispersan los datos con respecto a la media 3- 7 DESVIACION ESTANDAR Y VARIANZA Varianza: Varianza: La media aritmética de las desviaciones cuadradas de la media. Desviación Estándar: Desviación Estándar: Corresponde a la Raíz Cuadrada de la Varianza
8
EJEMPLO Calcular varianza y desviación estándar para los siguientes puntajes 10 – 12 – 15 – 18 - 20
9
EJEMPLO
10
Varianza en Muestras (s 2 ) Desviación Estándar en Muestras (s) 3- 10 VARIANZA Y DESVIACIÓN ESTÁNDAR EN MUESTRAS
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.