La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Almacenamiento de energía - Clave para un sistema energético eficiente y sostenible Christian Brennig 12.06.2018 Havana.

Presentaciones similares


Presentación del tema: "Almacenamiento de energía - Clave para un sistema energético eficiente y sostenible Christian Brennig 12.06.2018 Havana."— Transcripción de la presentación:

1 Almacenamiento de energía - Clave para un sistema energético eficiente y sostenible
Christian Brennig Havana

2 GERMAN ENERGY STORAGE ASSOCIATION Asociación Alemana de Almacenamiento de Energía
Socio de diálogo para la política, la administración, la ciencia y la publicidad. Trabajar en pos de la seguridad, eficiencia y sostenibilidad de las tecnologías de almacenamiento. 200 miembros: industria, investigación, certificación, firmas de abogados, industria de suministros, bancos y compañías de seguros. Transición energética = cambio y acoplamiento de los sectores del calor, la movilidad y la electricidad. | Seite 2

3 AGENDA Tecnologías de almacenamiento de energía
Aplicaciones para obtener calor y enfriamiento Aplicaciones para la electricidad | Seite 3

4 TECNOLOGÍAS DE ALMACENAMIENTO TÉRMICO
CALOR SENSIBLE CALOR LATENTE CALOR TERMOQUÍMICO Almacenamiento de agua caliente Intercambiador de calor en pozo (Underground Thermal Energy Storage, UTES- Almacenamiento de Energía Térmica Subterránea) Materiales de cambio de fase macro o microencapsulados (PCM), lodos Almacenamiento de adsorción (zeolita) y absorción (LiCl) de materiales termoquímicos (TCM) © ZAE Bayern Heat also means cooling Sensible heat mostly for short time storage; large hot water storages and downhole heat exchanger also applicable for long term storage Latent heat storages: more energy stored in less volume; using phase change heat; known from boiling water  need much more energy for getting water to steam without increasing temperature (heat of fusion; changing the state of a material e.g. from solid to liquid) Thermo chemical heat: long term storage, transportable ….. (drying a gel needs heat – humidifying emits heat)  used in solar cooling machines | Seite 4

5 TECNOLOGÍAS DE ALMACENAMIENTO DE ELECTRICIDAD
ENERGÍA ELÉCTRICA Almacenamiento magnético superconductor (SMES) Supercondensador ENERGÍA ELECTROQUÍMICA Baterías de iones de litio Baterías de azufre sódico (NaS-Cells) Baterías de ácido de plomo Baterías Redox-Flow ENERGÍA MECÁNICA Energía hidroeléctrica bombeada Aire comprimido (CAES) Volantes 1. Direct storage – Super caps 2. Conversion of electrical energy into electro-chemical energy (electrochemical series  batteries) 3. Conversion of electrical energy into mechanical energy (pumped hydro power or other potential energy, kinetic energy) | Seite 5

6 ELECTRICIDAD PARA TECNOLOGÍAS X
Producción y almacenamiento de hidrógeno El hidrógeno es el combustible más energético (en relación con su peso) Capacidades de almacenamiento a largo plazo sin pérdida Generación de electricidad en células de combustible / turbina H2  Refinación de electricidad con líquidos, de electricidad con sustancias químicas, de electricidad con combustible,etc. Use of electrolysers for the production of hydrogen Direct use of hydrogen Methanisation with carbon(dixide) Gaseuos or liquid Used in Generators for power generation or vehicles for mobility | Seite 6

7 APLICACIONES EN LA OBTENCIÓN DE CALOR
Mayor eficiencia usando bombas de calor en combinación con almacenamientos sensibles Heat pumps for efficient power use Annual performance factor depends mainly on the heat source  using stored heat increases the efficiency of heat pumps Shown example: Distric heating storage but also in smaller dimensions possible / storage coupled heat pumps | Seite 7

8 APLICACIONES EN EL ENFRIAMIENTO
Requerimientos menores de electricidad para elevados consumos de energía En funcionamiento desde hace 15 Construir sin concepción Menos costos de operación en el enfriamiento Japón: Tanque de almacenamiento de hielo para aire acondicionado, previniendo los precios de electricidad pico Even cold can be stored, in ice storage. Example: Electric driven Japan Railway Station of Nagoya Runs commercially and pays off, as it cushions enormous price peaks (equivalent to power offer) in air conditioning Shows that the economic efficiency of the storage depends enormously on the legal and econimic boundary conditions. In operation for 15 years | Seite 8

9 Electricidad para enfriamiento
EL ALMACENAMIENTO HACE QUE LA OBTENCIÓN DE CALOR Y EL ENFRIAMIENTO SEAN INTELIGENTES Source: Online Screenshot 4/ /live-bild/display Monitor de energía Finca esparraguera en Alemania Alimentación Electricidad para enfriamiento Batería SOC Producción PV Carga de electricidad Enfriamiento Vehículo eléctrico uso de calor residual A 160 kW and 192 kWh storage tank installed in the container, equipped with a sophisticated and intelligent energy management system. Current view on the energy flow of the farm. At this location, the battery storage plays an important role in load distribution. Tasks such as forecasting generation output play just as important a role as load forecasting. The storage is equipped with an output of 160 kWh and a capacity of 192 kWh. The system comprises the entire regulation and control as well as the island network function. | Seite 9

10 EJEMPLOS DE ACOPLAMIENTO SECTORIAL ENERGÍA MECÁNICA Y CALORÍFICA
Energía almacenada como aire comprimido o calor Fuente: Sims Municipal Recycling Facility / wikimedia by JelloMistress Sectoral coupling Examples – Use storages to optimise and flexibilise energy issues - Compressed air is an energy storage device - operate the electric compressor of a compressed air system using PV - Hot water storage tank - hot water production by means of surplus PV electricity Sector coupling is already often used unconsciously. In many cases, it helps to solve problems in the energy supply if they are taken into account in the planning phase. Hint: - Solar thermal collectors and sensible storage are to be preferred for high hot water demand; e.g food industry, galvanic industry Electricidad fotovoltaica convertida en calor | Seite 10

11 APLICACIONES DE ALMACENAMIENTO PARA LA ELECTRICIDAD
Diseño de carga máxima sin tecnologías de almacenamiento ELECTRICIDAD ELECTRICIDAD TIEMPO TIEMPO Central Eléctrica Generation and Electrical grid has to be designed by annual peak load Generation has to follow the load  no optimum in operation Power generators must be designed for peak loads. However, peak loads usually occur only very rarely during the day or during a year. As a result, generators are usually operated at a bad operating point. This results in high fuel consumption (and thus high CO2 load) or system failures at high load peaks. M Máquina / Carga | Seite 11

12 APLICACIONES DE ALMACENAMIENTO PARA LA ELECTRICIDAD
Desafío de la red eléctrica – estabilidad de frecuencia Balancing of generation and load Reasons for frequency instability Short-term changes of load Fluctuating renewable power production Break down of lines/cables Break down of a generation station / power plant Effects load dropping Damages of in infrastructure / sensitive processes Production and consumption must coincide at all times. Otherwise the generators will be decelerated too much or turn too fast. As a result, the mains frequency decreases or increases outside the tolerated ranges.On the generator side, this means that they must be dimensioned accordingly. On the consumer side, this sets the limits for peak loads. If a generator fails or the load of the consumers is too high, the mains frequency changes so much that the protection devices are triggered and the power supply is interrupted. | Seite 12

13 APLICACIONES DE ALMACENAMIENTO PARA LA ELECTRICIDAD
Mayor eficiencia y confiabilidad mediante el uso de tecnologías de almacenamiento Batteries for increasing frequency load – Balancing the grid Batteries and other storage devices help to absorb or provide peak loads. This leads to a more stable frequency behaviour of the entire system. Storage units can be installed at the generator or at the consumer. Storage facilities can also be used effectively at neuralgic points in the power grid. The system becomes less sensitive to rapid load changes. Batteries and other storage devices can react to power fluctuations within a few milliseconds. For example, batteries and Germany and the UK are used to provide an ultra-fast primary control (200 milliseconds). Power electronics and control electronics are crucial. Lead-acid batteries, lithium batteries and flywheel are used as storage technologies today. | Seite 13

14 APLICACIONES DE ALMACENAMIENTO PARA LA ELECTRICIDAD
Eficiente generación de electricidad y uso de la red  mayores cargas son posibles M Batteries/storages have different effects to the electric energy system Battery/Storages located close to the generation  higher efficiency of the generation Battery/Storages close to the demand  lower stresses to the local grid and the network elements (cables, transformers …) Battery can increase the reliability of thte power supply; flicker, short-term voltage fluctuations … Also heat decoupling from power plants with storage technologies save energy | Seite 14 Fußzeile

15 APLICACIONES DE ALMACENAMIENTO PARA LA ELECTRICIDAD
Batería de Central Eléctrica Batería comercial Fuente: ZDF hoy Power plant battery storage in south of Germany located on generator site - inertia, frequency control reserve, optimising operation Commercial battery storage located on load site - Peak load shaving, reliability of supply, increasing self consumption of renewables Fuente: tesvolt | Seite 15

16 APLICACIONES DE ALMACENAMIENTO PARA LA ELECTRICIDAD
Generación sostenible y suministro confiable de energía ELECTRICIDAD ELECTRICIDAD TIEMPO TIEMPO M Storages enable sustainable power production from renewable sources Storage technologies make it possible to replace conventional generators with renewable energies. They allow the electricity to be used when it is needed. They make it possible to connect different generators together. | Seite 16

17 APLICACIONES INDUSTRIALES Y COMERCIALES
Sector en crecimiento Cerca de 700 proyectos en Alemania (agricultura, edificaciones multifamiliares, comercio, industria) Mayor interés gracias a las garantías de estado en Turingia, Renania del Norte-Westfalia y Baden-Wurttemberg Aplicaciones: reducción de la adquisición de electricidad, disminución del pico, cargas atípicas de electricidad, autosuficiencia, UPS, electricidad de emergencia Actualmente: almacenamiento en combinación con infraestructura de carga In Germany, the number of industrial storage systems has been growing for the last four years. Many companies are now considering using storage to avoid peak loads in the network; peak loads cost extra. They thus reduce their electricity costs. On the other hand, the quality of the power supply is increased. Very short power outages endanger the production facilities. Storages are used to back up sensitive processes. They are also used as uninterruptible power supply or emergency power supply for hospitals and data centers. Electric mobility is a major topic in Germany. Here, storage tanks are used as buffers against high load peaks when charging electric cars with Power Chargers. State subsidies are drawing the attention of many companies, the technology is becoming a standard product and the costs of the systems are being reduced. | Seite 17

18 BATERÍAS A GRAN ESCALA EN ALEMANIA PARA LA RESERVA DE CONTROL PRIMARIO
This is a map of the large battery storages in operation and planned in Germany. Today, most of them are designed as lithium systems. Some as lead-acid batteries. In some places combinations of lead and lithium are used. The latest trend is towards the use of UltraCaps to optimize battery life and offer ultra fast response and inertia. The storages are able to supply their energy for a few minutes to several hours. They are charged via the power grid and discharge back into the power grid. In the distribution network, storage systems are responsible for the tasks of conventional power plants, such as primary control and ultra fast primary control. In the future, storages will also take over tasks such as long-term storage. Network reconstruction can also be realized with storages. First systems have already proven this. Large amounts of energy are nowadays provided by pumped hydro power. These are not shown on the map. 08/2016: ~35 MW /2017: ~178 MW /2018: ~323 MW | Seite 18

19 LA APLICACIÓN DETERMINA LA TECNOLOGÍA DE ALMACENAMIENTO
Electricidad Tiempo Aplicación de almacenamiento de energía Electricidad Tiempo Aplicación de almacenamiento de electricidad That leads me to my penultimate slide. Each storage must be selected according to the tasks it is to perform. We roughly differentiate between storages that have to provide energy with less power over a longer period of time (Energy Storage) and those that provide a lot of power for a short time (Power Storage). | Seite 19

20 TECNOLOGÍAS DE ALMACENAMIENTO PUESTAS TOTALMENTE DE RELIEVE
Regulación de la carga pico Optimización del autoconsumo Compensación de electricidad reactiva Energía positiva/negativa de control Energía de reserva Control de voltaje Traspaso del exceso de energía a otros sectores Suministro sin conexión a la red Capacidad de arranque en negro Reserva de inercia My last slides show how manifold storage can be used in the power grid. Storages are the swiss army knife for energy systems. The same picture can also be shown for heat and cold applications. Storages are essentially a component, which enables the system to operate more independently of time and thus more efficiently. Consider storage technologies in all forms when planning energy systems. | Seite 20

21 GRACIAS POR SU ATENCIÓN!
| Seite 21


Descargar ppt "Almacenamiento de energía - Clave para un sistema energético eficiente y sostenible Christian Brennig 12.06.2018 Havana."

Presentaciones similares


Anuncios Google