La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Árboles Binarios de Búsqueda (ABB)

Presentaciones similares


Presentación del tema: "Árboles Binarios de Búsqueda (ABB)"— Transcripción de la presentación:

1 Árboles Binarios de Búsqueda (ABB)
ABB = Árbol binario ordenado según uno o más criterios Cada nodo tiene dos hijos: el subárbol izquierdo es el árbol vacío o es un subárbol que contiene nodos cuya clave es menor que la suya el subárbol derecho es el árbol vacío o es un subárbol que contiene nodos cuya clave es mayor que la suya ¿Cuál de estos dos árboles binarios de enteros es un ABB? 7 7 4 9 4 9 8 8 Estructura de Datos II

2 TAD ABB: inserción Los nodos se insertan siempre como nodos hoja
El algoritmo de inserción garantiza para cada nodo del árbol que: - Su subárbol izquierdo contiene claves menores - Su subárbol derecho contiene claves mayores Funcionamiento: - Si el árbol estuviera vacío, se inserta el nodo en la raíz . Si no, se va recorriendo el árbol: En cada nodo se decide si hay que insertar a la derecha o la izquierda. Si el subárbol en que hay que insertar es vacío, se inserta el nuevo elemento. Si el subárbol en que hay que insertar no es vacío hay que recorrerlo hasta encontrar el lugar que le corresponde al nodo en ese subárbol. - Es un algoritmo recursivo. Estructura de Datos II

3 TAD ABB: Ejemplo de inserción
Insertar 8, 5, 1, 20, 12, 6, 4 8 Insertar 8 5 Insertar 5 20 Insertar 20 1 Insertar 1 6 Insertar 6 12 Insertar 12 4 Insertar 4 Estructura de Datos II

4 TAD ABB: Ejemplo de borrado
Borrar 8 Sustituir por 6 Sustituir por 12 Estructura de Datos II

5 TAD ABB: Ejemplo de borrado
Borrar 1 Borrar 20 Borrar 5 Borrar 1 Borrar 20 Borrar 5 Estructura de Datos II

6 ÁRBOLES BINARIOS DE BUSQUEDA
El árbol binario de búsqueda es una estructura sobre la cual se pueden realizar eficientemente las operaciones de búsqueda, inserción y eliminación. En las listas, las operaciones de inserción y eliminación se pueden llevar a cabo con facilidad, sin embargo la búsqueda es una operación bastante costosa que incluso nos puede llevar a recorrer todos los elementos de ella para localizar uno en particular. Estructura de Datos II

7 Definición de Árbol binario de Búsqueda
Para todo nodo T del árbol debe cumplirse que todos los valores de los nodos del subárbol izquierdo de T deben ser menores al valor del nodo T. De forma similar, todos los valores de los nodos del subárbol derecho de T deben ser mayores al valor del nodo T. Es aquel en el que el hijo de la izquierda (si existe) de cualquier nodo contiene un valor más pequeño que el nodo padre, y el hijo de la derecha (si existe) contiene un valor más grande que el nodo padre. Estructura de Datos II

8 También es posible observar que si se efectúa un recorrido inorden sobre un árbol de búsqueda se obtendrá una clasificación de los nodos en forma ascendente. El recorrido inorden del árbol de la figura anterior produce el siguiente resultado: Estructura de Datos II

9 INSERCIÓN EN UN ÁRBOL BINARIO DE BÚSQUEDA
La inserción es una operación que se puede realizar eficientemente en un árbol binario de búsqueda. La estructura crece conforme se inserten elementos al árbol. Los pasos que deben realizarse para insertar un elemento a un árbol binario de búsqueda son los siguientes: Debe compararse la clave a insertar con la raíz del árbol. Si es mayor, debe avanzarse hacia el subárbol derecho. Si es menor, debe avanzarse hacia el subárbol izquierdo. Repetir sucesivamente el paso 1 hasta que se cumpla alguna de las siguientes condiciones: 2.1 EL subárbol derecho es igual a vacío, o el subárbol izquierdo es igual a vació; en cuyo caso se procederá a insertar el elemento en el lugar que le corresponde. 2.2 La clave que quiere insertarse es igual a la raíz del árbol; en cuyo caso no se realiza la inserción. Estructura de Datos II

10 Ejemplo Supóngase que quieren insertarse las siguientes claves en un árbol binario de búsqueda que se encuentre vacío: claves: Los resultados parciales que ilustran cómo funciona el procedimiento se presentan en las figuras que siguen: Estructura de Datos II

11 Inserción : clave 120 clave 87 clave 43 clave 65
Estructura de Datos II

12 Nota: Las líneas gruesas indican el elemento que acaba de insertarse.
Inserción: Clave Clave 56 Nota: Las líneas gruesas indican el elemento que acaba de insertarse. Estructura de Datos II

13 BORRADO EN UN ÁRBOL BINARIO DE BÚSQUEDA
La operación de borrado es un poco más complicada que la de inserción. Ésta consiste en eliminar un nodo del árbol sin violar los principios que definen justamente un árbol binario de búsqueda. Se debe distinguir los siguientes casos: Si el elemento a borrar es terminal u hoja, simplemente se suprime. Si el elemento a borrar tiene un solo descendiente, entonces tiene que sustituirse por ese descendiente. Si el elemento a borrar tiene los dos descendientes, entonces se tiene que sustituir por el nodo que se encuentra más a la izquierda en el subárbol derecho o por el nodo que se encuentra más a la derecha en el subárbol izquierdo. Además, debemos recordar que antes de eliminar un nodo, debe localizársele en el árbol. Para esto, se utilizará el algoritmo de búsqueda. Estructura de Datos II

14 Ejemplo: Supóngase que se desea eliminar las siguientes claves del árbol binario de búsqueda de la figura anterior: claves: – 56 Los resultados parciales que ilustran cómo funciona el procedimiento se presentan en las figuras que siguen: Estructura de Datos II

15 Nota: Las flechas indican el elemento que quiere eliminarse.
ELIMINACIÓN: CLAVE 22 ELIMINACIÓN: CLAVE 99 a) b) Nota: Las flechas indican el elemento que quiere eliminarse. a) y f) corresponden al primer caso Estructura de Datos II

16 Eliminación en un árbol binario de búsqueda.
ELIMINACIÓN: CLAVE 87 d) c) Eliminación en un árbol binario de búsqueda. b) y c) corresponden al segundo caso; c) y d) corresponden al tercer caso. g) Estado final del árbol. Estructura de Datos II

17 ELIMINACIÓN: CLAVE 140 ELIMINACIÓN: CLAVE 135 - 56 f) g) e)
Estructura de Datos II

18 Estructura de Datos II

19 Estructura de Datos II

20 Estructura de Datos II

21 Estructura de Datos II

22 Estructura de Datos II

23 Estructura de Datos II

24 Estructura de Datos II

25 Estructura de Datos II

26 Estructura de Datos II

27 Estructura de Datos II

28 Estructura de Datos II

29 Estructura de Datos II

30 Estructura de Datos II

31 Estructura de Datos II


Descargar ppt "Árboles Binarios de Búsqueda (ABB)"

Presentaciones similares


Anuncios Google