Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porMarcos Venegas Salazar Modificado hace 6 años
1
Coeficiente de Gini Cátedra de Matemática aplicada a la Administracion
Abg. Carlos Páez Ing. Nancy Calles Ing. Milagros Valdés Lcda. Patricia Milá de la Roca Participantes:
2
Coeficiente de Gini 1. Definición 2. Método de cálculo
3. Caso práctico 4. Datos Estadísticos del Coeficiente de Gini en Venezuela y el Mundo. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
3
Definición El coeficiente de Gini es una medida de la desigualdad ideada por el estadístico italiano Corrado Gini. Normalmente se utiliza para medir la desigualdad de ingresos entre los individuos, dentro de un país o región y para un determinado periodo, pero puede utilizarse para medir cualquier forma de distribución desigual. El coeficiente de Gini es un número entre 0 y 1, en donde 0 se corresponde con la perfecta igualdad (todos tienen los mismos ingresos) y donde el valor 1 se corresponde con la perfecta desigualdad (una persona tiene todos los ingresos y los demás ninguno). El índice de Gini es el coeficiente de Gini expresado en porcentaje y es igual al coeficiente de Gini multiplicado por 100. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
4
Objeto Que mide el coeficiente de Gini?
Mide el grado de desigualdad de la distribución de los ingresos o la desigualdad de la riqueza de una región. Que NO mide el coeficiente de Gini? El bienestar de una sociedad. Tampoco permite, por sí sólo determinar la forma como está concentrado el ingreso; ni indica la diferencia en mejores condiciones de vida en una sociedad u otra. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
5
Curva de Lorenz: Si el área entre la línea de perfecta igualdad y la curva de Lorenz es a, y el área por debajo de la curva de Lorenz es b, entonces el coeficiente de Gini es a/(a+b). Esta proporción se expresa como porcentaje o como equivalente numérico de ese porcentaje, que es siempre un número entre 0 y 1. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
6
Indicadores de Desigualdad
La medicion de la desigualdad Determina como se distribuye una variable entre un conjunto de individuos La medición se asocia al ingreso I(y1,y2,…, yn). Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
7
Generalidades Normativas Positivas
II. Indicadores de desigualdad, Generalidades. En el estudio de la desigualdad tenemos diversos métodos matemáticos para cuantificar DESIGUALDAD tales como: Rango Desviación media relativa Desviación estándar Varianza Coeficiente de Variación Varianza de Logaritmo Índice de Gini Curva de Lorenz Dalton Etc. Normativas Positivas Las normativa Define el comportamiento de la distribucion de ingresos Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
8
Curva de Lorenz Curva de Lorenz (1905) Datos Tecnicos
Línea de equidad perfecta Quintiles o deciles Pi Yi (0,0) (100,100) Para el eje de x tengo el porcentaje de poblacion %Pi Para el eje de las Y tengo el porcentaje de ingreso % yi Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
9
Coeficiente de Gini Curva de Lorenz (1905) cálculo geométrico de indicador de desigualdad a a+b Coeficiente de Gini = Para el eje de x tengo el porcentaje de poblacion %Pi Para el eje de las Y tengo el porcentaje de ingreso % yi Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
10
Coeficiente de Gini El procedimiento que se utiliza para el cálculo del índice de Gini para datos agrupados es el siguiente: i. Ordenar los hogares en forma ascendente conforme a su ingreso. ii. Definir intervalos de igual tamaño (por ejemplo, deciles de hogares). iii. Construir la distribución de frecuencias relativas, simple y acumulada, de la variable a distribuir (ingreso), así como de la población que se desea estudiar. Si se opta por la formación de deciles de hogares/población, cada grupo deberá concentrar el 10% de las observaciones, o también por quintiles, que es igual al 20 % de los hogares estudiados. Para el eje de x tengo el porcentaje de poblacion %Pi Para el eje de las Y tengo el porcentaje de ingreso % yi Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
11
Calcular el Índice de Gini Graficar la Curva de Lorenz
Caso Práctico: Calcular el Índice de Gini Graficar la Curva de Lorenz A continuación se muestran los salarios de los empleados de una Empresa: Tenemos que según la Fórmula del índice de Gini es : CG = S(pi-qi) donde i = 1,…, n-1 Spi Sabemos que pi = n1+n2+n3..ni x 100 n Y que qi = x1*n1 + x2*n2+..xi*ni x 100 x1*n1+ x2*n2+..xn*nn Aplicando: pi = (10/40) *100 + (12/40)*100 … x*n = (3,5*10)*100 + (4,5*12)*100.. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
12
Caso Práctico: Completamos el cuadro con los nuevos datos y queda pendiente por calcular qi qi= (35/247)*100+ (89/247)*100… Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
13
Caso Práctico: Ahora procedemos a calcular el valor que nos falta para sustituir la fórmula El índice de Gini esta mas próximo a cero, por lo que se deduce que el nivel de concentración de los ingresos no es elevado. CG= 84 435 CG = 0.19 IG = 19% Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
14
Caso Práctico: Para graficar la curva de Lorenz (en excel), con el ejemplo anterior, insertamos los datos de las columnas en gris, considerando que la variable dependiente serian los % acum. ingresos qi (eje Y) y la variable independiente serian los porcentajes acumulados de la población pi (eje X). Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
15
Coeficiente de Gini en Venezuela
Datos Estadísticos del INE (Periodo ) 1998 1999 2000 2001 2002 2003 2004 2005 Evolución del coeficiente Gini (INE) 0.4865 0.4693 0.4772 0.4573 0.4938 0.4811 0.4559 0.4748 2006 2007 2008 2009 2010 2011 2012 2013 Evolución del coeficiente Gini (INE) 0.4422 0.4200 0.4099 Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
16
Coeficiente de Gini en Venezuela
Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
17
Coeficiente de Gini a Nivel Mundial
Datos estadísticos según la Organización para la Cooperación y el Desarrollo Económico (OCDE) Chile es el país más desigual de los países de la OCDE, donde el decil más rico gana 27 veces más que el decil más pobre, según un estudio del organismo que mide el índice de Gini y que tardó dos años en elaborarse. Esta brecha ha disminuido brevemente con respecto a los años ochenta. Con respecto a los 27 países del primer desarrollados que componen la OCDE, la brecha ha aumentando considerablemente, siendo el Reino Unido el país que más acrecentó su diferencia en la distribución de ingresos. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
18
Coeficiente de Gini a Nivel Mundial
Datos Estadísticos según la Cepal (Comisión Económica para América Latina) Venezuela es el tercer país con menor pobreza en Latinoamérica. Las naciones que cuentan con mayor cantidad de habitantes pobres son: Honduras (67,4%), Paraguay (54,8%), El Salvador (46,6%) y Colombia (44,3%). Venezuela ocupa el tercer lugar de los países con menor porcentaje de pobreza en Latinoamérica de acuerdo con la Comisión Económica para América Latina y el Caribe (Cepal). En su informe "Panorama Social de América Latina 2011" señala que durante 2010 el número de venezolanos en situación de pobreza se situó en 27,8%. Las naciones que presentaron menor porcentaje de pobreza durante 2010 son: Argentina y Uruguay (8,6%), seguidas de Panamá (25,8%), Venezuela (27,8%) y Perú 31,3%. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
19
Coeficiente de Gini a Nivel Mundial
Estos datos concuerdan con las cifras publicadas por el Instituto Nacional de Estadística venezolano (INE), que plantea que la pobreza bajó 21,6% entre 1998 y el primer semestre de 2011, al pasar de 49,0% a 27,4%. Conclusión: La diferencia promedio entre el decil más rico y el decil más pobre de dichos países es de nueve es a uno, mientras en la década de los ochenta la diferencia era de siete es a uno. (Ver Gráfico Nro. 2) Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
20
Coeficiente de Gini a Nivel Mundial
Gráfico Nro. 2 (Periodo 1990 – 2011) Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
21
Coeficiente de Gini a Nivel Mundial
Datos Estadísticas del INE (Periodo ) Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
22
Relación del Indice de Desigualdad a Nivel Mundial
Distribución de la riqueza por grandes regiones Los cinco países más ricos, en valores absolutos, son Estados Unidos, Japón, China, Francia y Alemania, que concentran el 60% de la riqueza mundial de los hogares. Sin embargo, la riqueza relativa (por persona) es mayor en Suiza, Australia, Noruega, Luxemburgo y Suecia, cuya población de 45 millones de habitantes. España se sitúa en 2012 en el grupo de los países más ricos, ocupando el puesto 26 en el ranking de riqueza por persona (el décimo del mundo por la riqueza total de los hogares). Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
23
Distribución de la Riqueza a Nivel Mundial
Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
24
Comparativas del Coeficiente más alto y más bajo a nivel Mundial
Según Informe de Desarrollo Humano del año 2009 El Coeficiente de Gini mide los términos distributivos globales sin separar a lo que corresponde a población urbana y población rural. Este dato es muy valioso a considerar porque no se puede comparar un país como China que tiene un 60% de la población rural, con un país como EEUU que tiene menos de 10% de población rural. En este sentido cuando se hace la comparación sin tomar en cuenta la otra variable podemos confundir los resultados. Según el Informe de Desarrollo Humano del año 2010, el Coeficiente de Gini para Namibia es 0,743 (situación de máxima desigualdad en el Mundo), mientras que el de Dinamarca es de 0,247 (el país más igualitario). Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
25
Comparativas del Coeficiente más alto y más bajo a nivel Mundial
Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
26
Diferencia entre pobreza y desigualdad
Conclusiones del Informe de Desarrollo Humano 2010: Los países que reparten su renta de una forma más equitativa son los Nórdicos, Japón, Alemania y Suiza. Los Países Árabes tienen índices de Gini más bajos que los países de África Negra. América Latina sufre un problema serio de desigualdad. Los que se llevan el sesgo de inequitativos – según A. Cid- son Colombia y Honduras, y, en una segunda fila, Brasil, Chile, Panamá y Paraguay. Argentina y Uruguay están muy bien, con números iguales o superiores a los del Sudeste Asiático“. Esto da un resultado paradójico. Países como Argentina o Venezuela tienen un Gini de 0,39, ostensiblemente más bajo que el de Chile, que es 0,50. Sin embargo, ambos países tienen casi el doble de pobreza. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
27
Diferencia entre pobreza y desigualdad
Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
28
Otros Datos Estadísticos
PAISES CON INDICES DE DESIGUALDAD INDICE DE GINI DEL 2010 Brasil 0,55 Chile 0,52 México 0,516 Argentina 0,488 Venezuela 0,434 China 0,415 Estados Unidos 0.408 Irlanda 0,343 Rusia 0,437; 0,437 Portugal 0,385 Gran Bretaña 0,36 Italia España 0,347 Francia 0,327 Canadá 0,326 Alemania 0,283 Suecia 0,25 Japón 0,249 Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
29
Observaciones de Interés
Casi la mitad de la riqueza mundial está en manos de sólo el 1%de la población. La riqueza del 1% de la población más rica del mundo asciende a 110 billones de dólares, una cifra 65 veces mayor que el total de la riqueza que posee la mitad más pobre de la población mundial. La mitad más pobre de la población mundial posee la misma riqueza que las 85 personas más ricas del mundo. Siete de cada diez personas viven en países donde la desigualdad económica ha aumentado en los últimos 30 años. El 1% más rico de la población ha visto cómo se incrementaba su participación en la renta entre 1980 y 2012 en 24 de los 26 países de los que tenemos datos. En Estados Unidos, el 1% más rico ha acumulado el 95% del crecimiento total posterior a la crisis desde 2009, mientras que el 90% más pobre de la población se ha empobrecido aún más. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
30
Observaciones de Interés
El Gini sirve de poco si se considera aislado, sin tener en cuenta, por ejemplo, la cantidad de pobres del país en cuestión. Las naciones de mayor bienestar social en el mundo son las que reúnen igualdad y riqueza. Noruega, que con 0,22 tiene el coeficiente de desigualdad más bajo. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
31
Evolución en el Tiempo Una de la ventajas más destacadas que hemos visto es que el índice de Gini puede indicar cómo cambia la distribución de una población durante el tiempo. Así que habrá veces que lo importante del estudio no sea la comparación entre poblaciones, sino su desarrollo durante un tiempo concreto. Junio, 2014 Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
32
Gracias Coeficiente de Gini Junio, 2014
Barcelona Matemáticas aplicadas a la Administración, Maestría Gerencia General, Universidad de Oriente, Núcleo Anzoátegui
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.