La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

PRESENTADO A: Ing. Pabel Batista

Presentaciones similares


Presentación del tema: "PRESENTADO A: Ing. Pabel Batista"— Transcripción de la presentación:

1 PRESENTADO A: Ing. Pabel Batista

2 ESCURRIMIENTO

3 ESCURRIMIENTO La expresión escurrimiento superficial suele referirse al volumen de las precipitaciones que caen sobre una cuenca, menos la retención superficial y la infiltración. El escurrimiento superficial o directo es función de la intensidad de la precipitación y de la permeabilidad de la superficie del suelo, de la duración de la precipitación, del tipo de vegetación, de la extensión de la cuenca hidrográfica considerada, de la profundidad del nivel freático y de la pendiente de la superficie del suelo. La aportación de una cuenca se representa comúnmente en una gráfica llamada "hidrograma", que consiste en una curva que representa las oscilaciones, respecto el tiempo, del nivel del agua de un río en una sección dada del mismo. En el caso de un río con un tiempo de descarga muy largo, los caudales que por él circulan al cabo de un tiempo, son el resultado de la acumulación del escurrimiento superficial con la aportación subterránea.

4 Ciclo del Escurrimiento
El estudio del escurrimiento de los ríos como parte del ciclo hidrológico, incluye la distribución del agua y su trayectoria desde que se precipita sobre la tierra hasta que alcanza la red hidrográfica o vuelve directamente a la atmósfera a través de la evapotranspiración. La distribución del volumen total de agua caída durante una precipitación dada, depende tanto de las características y condiciones físicas -naturales o artificiales- de la cuenca, como de las características de la propia precipitación. Al comienzo de una precipitación fuerte, una gran cantidad de agua es interceptada por la vegetación; el agua así almacenada sobre la superficie de la capa vegetal se encuentra muy expuesta al viento y ofrece una enorme área de evaporación, de tal forma que las precipitaciones de corta duración y poca intensidad pueden llegar a ser completamente consumidas por la intercepción de las plantas, por la pequeña cantidad de agua que se infiltra a través del suelo y por el agua que llena los charcos y pequeñas depresiones de la superficie del suelo. Para que el agua llegue a infiltrarse, la superficie del suelo debe presentar una serie de condiciones adecuadas. Cuando a lo largo de una precipitación, el poder de intercepción y de almacenamiento en la superficie del suelo han sido ya agotados, y cuando la precipitación es tal que su intensidad excede la capacidad de infiltración del suelo, comienza ya el escurrimiento superficial propiamente dicho. La superficie del suelo se cubre en ese momento con una fina película de agua llamada película de retención superficial. Una vez que el agua corre sobre la superficie del suelo y alcanza los cauces de la red hidrográfica, comienza a aparecer el escurrimiento superficial en los cauces.

5 Figura 1. Tipos de escurrimiento o escorrentía

6 Parte del agua que se infiltra en el suelo continúa fluyendo lateralmente como un flujo hipodérmico, que tiene lugar a pequeñas profundidades debido a la presencia de horizontes relativamente impermeables situados muy cerca de la superficie del suelo, avanzando de este modo los cauces de la red sin haber sufrido una percolación profunda. Otra parte de esta agua se percola hacia la zona de saturación de las aguas subterráneas y eventualmente, alcanza la red hidrográfica para suministrar el escurrimiento base de los ríos. Existe todavía otra porción del agua infiltrada, que no llega a alcanzar el nivel de saturación de las aguas subterráneas y queda retenida encima del nivel freático, ésta es la llamada zona de saturación incompleta.

7 Hidrograma de escurrimiento
Es una gráfica que nos muestra la descarga, caudal o gasto de un río en función del tiempo. Durante un período de sequía la descarga estará compuesta enteramente de contribuciones subterráneas, como se observa en la Figura 5. A medida que el río o arroyo drena agua de la reserva subterránea, el nivel freático decae, dejando cada vez menos agua para alimentarlo. Si no hay una recarga del agua subterránea, el escurrimiento será cero.

8 Figura 5. Hidrograma mostrando la recesión del flujo base en estación de verano seco

9 El escurrimiento va a depender de la topografía, el clima, la geología y el tipo de suelo. El flujo base del escurrimiento decrece en un período de sequía debido a que el agua subterránea se drena hacia el río o arroyo, y así el nivel freático desciende. La recesión del flujo base es igual a: Q = Q0 e –at Donde: Q = flujo al mismo tiempo t después de que la recesión empezó (ft3/s o m3/s) Q0 = flujo al inicio de la recesión (ft3/s o m3/s) a = constante de recesión para la cuenca ( d-1) t = tiempo desde que la recesión empieza (d)

10 Partes de un hidrograma
Si se mide el gasto (volumen de escurrimiento por unidad de tiempo; m3/s) que pasa de manera contínua durante todo un año por una determinada sección transversal de un río y se grafican los valores obtenidos contra el tiempo, se obtendría una gráfica como la de la Figura 6.

11 Aunque la forma de los hidrogramas producidos por tormentas particulares varía no solo de cuenca a cuenca, sino también de tormenta a tormenta, es posible, en general distinguir las siguientes partes en cada hidrograma. El escurrimiento superficial esta afectado por dos factores q son: factores metereologicos factores fisiográficos

12 1.- Factores metereologicos.
Forma y tipo de la precipitación.- La manera como se origina la precipitación y la forma que adopta la misma tiene una gran influencia en la distribución de los escurrimientos de la cuenca. Intensidad de precipitación.- Cuando la intensidad de lluvia excede a la capacidad de infiltración del suelo, se presenta el escurrimiento superficial. Duración de la precipitación La capacidad de infiltración del suelo disminuye durante la precipitación, por lo que puede darse el caso, que tormentas con intensidad de lluvia relativamente baja, produzcan un escurrimiento superficial considerable, si su duración es extensa. En algunos casos, particularmente en las zonas bajas de la cuenca, para lluvias de mucha duración el nivel freático puede ascender hasta la superficie del suelo, llegando a nulificar la infiltración, aumentado por lo tanto, la magnitud del escurrimiento. Se ha observado, que los caudales que se presentan en la descarga de una cuenca, son máximos cuando el tiempo que tardan en concentrarse (tiempo de concentración), es similar a la duración de la tormenta que los origina.

13 Distribución de la lluvia en la cuenca
Es muy difícil, sobre todo en cuencas de gran extensión, que la precipitación se distribuya uniformemente, y con la misma intensidad en toda el área de la cuenca. El escurrimiento resultante de cualquier lluvia, depende de la distribución en tiempo y espacio de ésta. Si la precipitación se concentra en la parte baja de la cuenca, producirá caudales mayores, que los que se tendrían si tuviera lugar en la parte alta, donde el efecto regulador de los caudales, y el retardo en la concentración, se manifiesta en una disminución del caudal máximo de descarga. Dirección y velocidad de la tormenta La dirección y velocidad con que se desplaza la tormenta, respecto a la dirección general del escurrimiento, en el sistema hidrográfico de la cuenca, tiene una influencia notable en el caudal máximo resultante y en la duración del escurrimiento superficial. En general, las tormentas que se mueven en el sentido de la corriente, producen caudales de descarga mayores, que las que se desplazan hacia la parte alta de la cuenca. Otras condiciones meteorológicas Aunque la lluvia es el factor más importante que afecta y determina la magnitud de un escurrimiento, no es el único que debe considerarse. Existen condiciones meteorológicas generales que influyen, aunque de una manera indirecta en el escurrimiento superficial, como es el caso de la temperatura, la velocidad del viento, la humedad relativa, la presión barométrica, etc.

14 2.- Factores fisiográficos Superficie de la cuenca
Debido a que la cuenca, es la zona de captación de las aguas pluviales que integran el escurrimiento de la corriente, su tamaño tiene una influencia, que se manifiesta de diversos modos en la magnitud de los caudales que se presentan. Se ha observado que la relación entre el tamaño del área y el caudal de descarga no es lineal. A igualdad de los demás factores, para cuencas mayores, se observa una disminución relativa en el caudal máximo de descarga, debido a que son mayores, el efecto de almacenaje, la distancia recorrida por las aguas, y por lo tanto, el tiempo de regulación en los cauces naturales. Otro factor importante, que afecta la relación entre el caudal y la superficie de la cuenca, es que la máxima intensidad de lluvia, que puede ocurrir con cualquier frecuencia, decrece conforme aumenta la superficie que cubre la tormenta, por lo que para cuencas mayores, se tendrán intensidades de precipitación (referidas a la superficie de la cuenca), y caudales específicos de descarga menores.

15 Forma de la cuenca Para tomar en cuenta, cuantitativamente la influencia que la forma de la cuenca, tiene en el valor del escurrimiento, se han propuesto índices numéricos, como es el caso del factor de forma y el coeficiente de compacidad. El factor de forma, expresa la relación entre el ancho promedio y la longitud de la cuenca, medida esta última desde el punto mas alejado hasta la descarga. El ancho promedio se obtiene, a su vez, dividiendo la superficie de la cuenca entre su longitud. Para cuencas muy anchas o con salidas hacia los lados, el factor de forma puede resultar mayor que la unidad. Los factores de forma inferiores a la unidad, corresponden a cuencas mas bien extensas, en el sentido de la corriente. El coeficiente de compacidad, es indicador de la regularidad geométrica de la forma de la cuenca. Es la relación entre el perímetro de la cuenca, y la circunferencia de un círculo con igual superficie que el la de la cuenca.

16 Elevación de la cuenca. La elevación media de la cuenca, así como la diferencia entre sus elevaciones extremas, influye en las características meteorológicas, que determinan principalmente las formas de la precipitación, cuyo efecto en la distribución se han mencionado anteriormente. Por lo general, existe una buena correlación, entre la precipitación y la elevación de la cuenca, es decir, a mayor elevación la precipitación es también mayor. Pendiente La pendiente media de la cuenca, es uno de los factores que mayor influencia tiene en la duración del escurrimiento, sobre el suelo y los cauces naturales, afectando de manera notable, la magnitud de las descargas; influye así mismo, en la infiltración, la humedad del suelo y la probable aparición de aguas subterránea al escurrimiento superficial, aunque es difícil la estimación cuantitativa, del efecto que tiene la pendiente sobre el escurrimiento para estos casos.

17 Tipo y uso del suelo El tamaño de los granos del suelo, su ordenamiento y comparación, su contenido de materia orgánica, etc, son factores íntimamente ligados a la capacidad de infiltración y de retención de humedad, por lo que el tipo de suelo, predominante en la cuenca, así como su uso, influye de manera notable en la magnitud y distribución de los escurrimientos. Estado de humedad antecedente del suelo La cantidad de agua existente en las capas superiores del suelo, afecta el valor del coeficiente de infiltración. Si la humedad del suelo, es alta en el momento de ocurrir una tormenta, la cuenca generará caudales mayores debido a la disminución de la capacidad de infiltración. Explicar la curva Q = F(t) Es la parte del hidrograma en que el caudal procede solamente de la escorrentía básica. Es importante notar que la curva de agotamiento, comienza más alto que el punto de inicio del escurrimiento directo (punto de agotamiento antes de la crecida), eso ese debido a que parte de la precipitación que se infiltró está ahora alimentando el cauce. Indique cual corresponde a un suelo arcilloso y cual a un arenoso. Si se tiene una densidad de drenaje alta que puede decirse de la cuenca. Llamamos densidad de drenaje a la relación entre la longitud total de todos los cauces de agua y la superficie total de la cuenca. D = L/S D = Densidad de drenaje L = Longitud total de todos los cauces de agua en km S = Superficie total de la cuenca en km2 Entonces podemos decir que la cuenca tiene una superficie pequeña.

18 El método racional se utiliza en hidrología para determinar el Caudal Instantáneo Máximo de descarga de una cuenca hidrográfica. La fórmula básica del método racional es: Qp=C.ic.Ad Donde: Qp= Caudal máximo expresado en m3/s C= Coeficiente de escurrimiento (o coeficiente de escorrentía) ver tabla con valores numéricos en ese artículo principal ic= Intensidad de la precipitación concentrada en m/s en un período igual al tiempo de concentración tc Ad = Área de la cuenca hidrográfica en m2. ic=i.Tc/Ti i= Intensidad de la precipitación en m/s Tc= Tiempo de concentración en segundos Ti= Tiempo durante el que se midió la Intensidad de la precipitación en segundos Esta fórmula empírica, por su simplicidad, es aun utilizada para el calculo de alcantarillas, galerías de aguas pluviales, estructuras de drenaje de pequeñas áreas, a pesar de presentar algunos inconvenientes, superados por procedimientos de cálculo más complejos. También se usa en ingeniería de carreteras para el cálculo de caudales vertientes de la cuenca a la carretera, y así poder dimensionar las obras de drenaje necesarias, siempre que la cuenca vertiente tenga un tiempo de concentración no superior a 6 horas.

19 El método del hidrograma unitario es uno de los métodos utilizados en hidrología, para la determinación del caudal producido por una precipitación en una determinada cuenca hidrográfica. Si fuera posible que se produjeran dos lluvias idénticas sobre una cuenca hidrográfica cuyas condiciones antes de la precipitación también fueran idénticas, sería de esperarse que los hidrogramas correspondientes a las dos lluvias también fueran iguales. Esta es la base del concepto de hidrograma unitario. En la realidad es muy difícil que ocurran lluvias idénticas; esta pueden variar su duración; el volumen precipitado; su distribución espacial; su intensidad.

20 Un hidrograma unitario es un hidrograma (Q = f (t)) resultante de un escurrimiento correspondiente a un volumen unitario (1 cm, mm, plg,... de lluvia por la cuenca) proveniente de una lluvia con una determinada duración y determinadas características de distribución en la cuenca hidrográfica. Se admite que los hidrogramas de otras lluvias de duración y distribución semejantes presentarán el mismo tiempo de base, y con ordenadas de caudales proporcionales al volumen defluido. Se puede construir un hidrograma unitario a partir de los datos de precipitación y de caudales referentes a una lluvia de intensidad razonablemente uniforme y sin implicaciones resultantes de lluvias anteriores o posteriores. El primer paso es la separación del escurrimiento subterráneo del escurrimiento superficial directo. Se calcula el volumen defluido (representada por el área ABCD de la figura) y se determinan las ordenadas del hidrograma unitario dividiendo las ordenadas del hidrograma directo, por la altura de escurrimiento distribuido sobre la cuenca, hdistribuido, expresado en cm. El hidrograma unitario resultante corresponde al volumen de un centímetro de escurrimiento. El paso final es la selección de la duración específica de una lluvia, con base en el análisis de los datos de la precipitación. Períodos de baja intensidad de precipitación en el comienzo y al final de la lluvia deben ser despreciados, ya que no contribuyen sustancialmente al escurrimiento.

21


Descargar ppt "PRESENTADO A: Ing. Pabel Batista"

Presentaciones similares


Anuncios Google