La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

https://www.youtube.com/watch?v=RrJyoMF4Ir8 Ver VIDEO Aquí.

Presentaciones similares


Presentación del tema: "https://www.youtube.com/watch?v=RrJyoMF4Ir8 Ver VIDEO Aquí."— Transcripción de la presentación:

1

2

3 https://www.youtube.com/watch?v=RrJyoMF4Ir8 Ver VIDEO Aquí

4 PPTCEL001QM11-A16V1 Clase Fenómenos nucleares I: partículas radiactivas

5 Aprendizajes esperados Conocer las partículas radiactivas. Conocer el concepto de isótopos. Aplicar el concepto de masa atómica promedio. Interpretar reacciones nucleares. Páginas del libro desde la 23 a la 29.

6 Pregunta oficial PSU Fuente: DEMRE – U. DE CHILE, modelo pregunta HPC Admisión PSU 2016 Desde el siglo pasado, los reactores nucleares de fisión se han transformado en una opción para la generación de electricidad, como también en una fuente de radioisótopos con importantes usos en la medicina, la agricultura y la industria, entre otros. No obstante, el beneficio que se puede obtener de su buen uso, siempre está latente la posibilidad de un accidente en el reactor que implique la fuga de radiación. En la siguiente figura se representan algunas características de los tres tipos de radiaciones más comunes emitidas por elementos radiactivos: Con respecto al poder ionizante de las radiaciones, este está relacionado con la capacidad de desplazar electrones de átomos o moléculas, generando iones, que en reacciones posteriores pueden llegar a formar radicales libres, especies altamente reactivas y dañinas. Con respecto al poder de alcance de las radiaciones, se ha determinado que la radiación alfa recorre un par de centímetros, la radiación beta un par de metros y la radiación gamma varios cientos de metros, desde la fuente de emisión. De acuerdo con la información anterior y considerando el daño a los seres vivos causado por una fuga de radiaciones desde un reactor, es correcto establecer que A) las radiaciones alfa y beta no causarían daño a los seres vivos. B) las emisiones gamma serían las últimas en afectar a los seres vivos. C) la radiación alfa causaría graves daños en los órganos internos de los seres vivos. D) el daño causado a los seres vivos sería directamente proporcional al tamaño de la fuente radiactiva. E) la ubicación de la fuente de radiación influiría en la magnitud del daño causado a los seres vivos.

7 1. Naturaleza de las reacciones nucleares 2. Desintegración nuclear. Radiactividad

8 1. Naturaleza de las reacciones nucleares Algunos núcleos son inestables y espontáneamente emiten partículas y/o radiaciones electromagnéticas. A este fenómeno se le llama radiactividad. La radiactividad es una propiedad de los isótopos que son "inestables", es decir, aquellos cuyos núcleos se desintegran espontáneamente. Todos los elementos que tienen número atómico mayor o igual a 84 son radiactivos. Las reacciones nucleares pueden ser endotérmicas o exotérmicas.

9 1. Naturaleza de las reacciones nucleares Las reacciones nucleares son muy distintas a las reacciones químicas ordinarias. Reacciones químicasReacciones nucleares Los átomos se reorganizan por la ruptura y formación de enlaces químicos. Los núcleos se descomponen dando lugar a núcleos de otros elementos. Solo participan los electrones de los orbitales atómicos o moleculares. Pueden participar protones, neutrones, electrones y otras partículas elementales. Absorción o liberación de cantidades de energía relativamente pequeñas. Absorción o liberación de cantidades enormes de energía. Velocidades de reacción afectadas por T, P, concentración y catalizadores. Velocidades de reacción, por lo general, no afectadas por T, P o catalizadores.

10 1. Naturaleza de las reacciones nucleares El factor principal que determina la estabilidad del núcleo es la relación neutrón/protón (n/p). 1.1 Estabilidad nuclear

11 Ejercicio 15 “guía del alumno” Pregunta HPC La estabilidad de un núcleo atómico se puede predecir usando la razón entre neutrones y protones (n:p). Al graficar el número de protones frente al número de neutrones para todos los átomos, se obtiene una franja de estabilidad en la que se ubican todos los elementos estables, como se muestra a continuación. Los núcleos ubicados a la izquierda de la franja de estabilidad tienen exceso de neutrones, por lo que deben disminuir el número de neutrones y aumentar el de protones, lográndose mediante la siguiente reacción Los núcleos ubicados a la derecha de la franja, presentan exceso de protones, por lo tanto, tienden a disminuir el número de protones y aumentar el de neutrones mediante la reacción Es (son) correctas A) solo I. D) solo II y III. B) solo II. E) I, II y III. C) solo III. A ASE

12 1. Naturaleza de las reacciones nucleares 1.2 Tipos de átomos Isótopos → Son núcleos del mismo número atómico pero de distinta masa atómica. Isóbaros → Son núcleos de la misma masa atómica pero de distinto número atómico. Isótonos → Son núcleos que tienen el mismo número de neutrones y distinto número atómico y másico.

13 1. Naturaleza de las reacciones nucleares 1.3 Masa atómica promedio La masa atómica depende de los isótopos constituyentes. Se pondera la masa de los isótopos por su abundancia relativa en la corteza terrestre. Media aritmética ponderada

14 2. Desintegración nuclear. Radiactividad Radiactividad natural Corresponde a núcleos que se desintegran espontáneamente, debido a su propia inestabilidad, con emisión de energía en forma de partículas y/o radiaciones. Radiactividad artificial o inducida Ocurre cuando la reacción no es espontánea, sino provocada por bombardeo con otra partícula para formar un núcleo inestable. La radiactividad es una propiedad inherente a ciertos átomos, es decir, es una propiedad atómica.

15 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Partícula alfa (α) Corresponde a núcleos de helio,. Son partículas de carga +2, y de masa 4 en la escala de masas atómicas. Su emisión se asocia a núcleos pesados. Cuando un núcleo emite una partícula α, su número atómico disminuye en dos unidades, y su masa atómica disminuye en cuatro unidades (Ley de Soddy).

16 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Por ejemplo, cuando el núcleo emite una partícula α se convierte en el núcleo de radio. La reacción nuclear que ilustra este hecho es:

17 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Partícula beta (β) Corresponden a electrones,. Son partículas de masa aproximadamente igual a 0 y de carga –1. La emisión de un electrón procede de la conversión de un neutrón en un protón. Su emisión se asocia a núcleos con exceso de neutrones. Un núcleo se transforma en otro núcleo situado un lugar adelante en la Tabla Periódica, sin cambiar su masa atómica (Ley de Fajans).

18 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Por ejemplo, cuando el núcleo emite un electrón se convierte en.

19 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Radiación gama (γ) Es una radiación electromagnética. Corresponde a fotones de alta energía. Suele acompañar a la emisión de partículas α y β, estabilizando el núcleo resultante. Esta radiación no implica ningún cambio en el número atómico ni en el número másico.

20 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Otras radiaciones Captura de electrones Emisión de positrones Ocurre cuando un protón se convierte en neutrón. Captura de un electrón de capa interna. También se denomina a este proceso captura K. Emite un “electrón positivo”. Se aplica para la obtención de núcleos muy pesados.

21 Ejercitación Ejercicio 6 “guía del alumno” D Aplicación

22 2. Desintegración nuclear. Radiactividad 2.1 Partículas radiactivas Ejemplos de cada uno de los procesos mencionados:

23 2. Desintegración nuclear. Radiactividad 2.2 Características de las partículas radiactivas Nivel de penetración Depende de la velocidad y la masa asociada a las partículas. Los rayos gamma son de alta energía y de longitudes de onda muy cortas. Son las de mayor nivel de penetración. Poder de ionización Depende de la cantidad de energía y carga asociada. α ion > β ion > ɣ ion

24 Pregunta oficial PSU Fuente: DEMRE – U. DE CHILE, modelo pregunta HPC Admisión PSU 2016 Desde el siglo pasado, los reactores nucleares de fisión se han transformado en una opción para la generación de electricidad, como también en una fuente de radioisótopos con importantes usos en la medicina, la agricultura y la industria, entre otros. No obstante, el beneficio que se puede obtener de su buen uso, siempre está latente la posibilidad de un accidente en el reactor que implique la fuga de radiación. En la siguiente figura se representan algunas características de los tres tipos de radiaciones más comunes emitidas por elementos radiactivos: Con respecto al poder ionizante de las radiaciones, este está relacionado con la capacidad de desplazar electrones de átomos o moléculas, generando iones, que en reacciones posteriores pueden llegar a formar radicales libres, especies altamente reactivas y dañinas. Con respecto al poder de alcance de las radiaciones, se ha determinado que la radiación alfa recorre un par de centímetros, la radiación beta un par de metros y la radiación gamma varios cientos de metros, desde la fuente de emisión. De acuerdo con la información anterior y considerando el daño a los seres vivos causado por una fuga de radiaciones desde un reactor, es correcto establecer que A) las radiaciones alfa y beta no causarían daño a los seres vivos. B) las emisiones gamma serían las últimas en afectar a los seres vivos. C) la radiación alfa causaría graves daños en los órganos internos de los seres vivos. D) el daño causado a los seres vivos sería directamente proporcional al tamaño de la fuente radiactiva. E) la ubicación de la fuente de radiación influiría en la magnitud del daño causado a los seres vivos. ALTERNATIVA CORRECTA E

25 Tabla de corrección ÍtemAlternativaUnidad TemáticaHabilidad 1 E Fenómenos nucleares y sus aplicaciones Comprensión 2 E Fenómenos nucleares y sus aplicaciones Reconocimiento 3 C Fenómenos nucleares y sus aplicaciones Comprensión 4 A Fenómenos nucleares y sus aplicaciones Aplicación 5 C Fenómenos nucleares y sus aplicaciones Aplicación 6 D Fenómenos nucleares y sus aplicaciones Aplicación 7 C Fenómenos nucleares y sus aplicaciones Aplicación 8 C Fenómenos nucleares y sus aplicaciones Comprensión 9 B Fenómenos nucleares y sus aplicaciones Aplicación 10 E Fenómenos nucleares y sus aplicaciones Aplicación

26 Tabla de corrección ÍtemAlternativaUnidad TemáticaHabilidad 11 D Fenómenos nucleares y sus aplicaciones Comprensión 12 D Fenómenos nucleares y sus aplicaciones Reconocimiento 13 C Fenómenos nucleares y sus aplicaciones Aplicación 14 C Fenómenos nucleares y sus aplicaciones Comprensión 15 A Fenómenos nucleares y sus aplicaciones ASE

27 Síntesis de la clase Átomos Alfa Elementos buscan generar estabilidad BetaGamma Emisiones ISÓTOPOS INESTABLES RADIACTIVIDAD Aumento nivel de penetración Aumento poder de ionización

28 Prepara tu próxima clase En la próxima sesión, estudiaremos Fenómenos nucleares II: fisión y fusión nuclear

29

30 Propiedad Intelectual Cpech RDA: 186414 ESTE MATERIAL SE ENCUENTRA PROTEGIDO POR EL REGISTRO DE PROPIEDAD INTELECTUAL. Equipo Editorial Área Ciencias: Química


Descargar ppt "https://www.youtube.com/watch?v=RrJyoMF4Ir8 Ver VIDEO Aquí."

Presentaciones similares


Anuncios Google