Descargar la presentación
La descarga está en progreso. Por favor, espere
1
SISTEMAS DE ECUACIONES LINEALES.
2
Definición Una ecuación lineal con n incógnitas x1, x2, …, xn es una ecuación de la forma Siendo ai1, ai2, …, ain números reales, que se denominan coeficientes Un sistema de ecuaciones lineales es un conjunto de m ecuaciones lineales con n incógnitas de la forma siguiente:
3
Si c1, c2, …, cn es solución de cada ecuación de S
Solución de un sistema de ecuaciones lineales El conjunto de números reales c1, c2, …, cn es una solución de la ecuación Si al sustituir en ella cada xi por ci i = 1,2,…, n la igualdad resultante es una identidad El conjunto de números reales c1, c2, …, cn es una solución del sistema S Si c1, c2, …, cn es solución de cada ecuación de S
4
Sistemas equivalentes
Dos sistemas de ecuaciones lineales son equivalentes, si tienen el mismo conjunto de soluciones Clasificación de los sistemas de ecuaciones lineales Determinados Con solución única Compatibles Si tienen solución Indeterminados Con infinitas soluciones Incompatibles Si no tienen solución
5
los dos planos son secantes.
INTERPRETACIÓN GEOMÉTRICA DE UN SISTEMA DE DOS ECUACIONES LINEALES CON TRES INCÓGNITAS Cada ecuación lineal con tres incógnitas, representa a un plano en el espacio 1 2 1 = 2 Si el sistema es compatible indeterminado los dos planos son secantes. Si el sistema es compatible indeterminado los dos planos son coincidentes. 1 2 Si el sistema es incompatible, los dos planos son paralelos.
6
INTERPRETACIÓN GEOMÉTRICA DE UN SISTEMA DE 3 ECUACIONES LINEALES CON 3 INCÓGNITAS
S sistema compatible determinado los tres planos tienen un único punto P común. Si x = x0, y = y0, z = z0 es la solución del sistema (x0, y0, z0) son las coordenadas del punto P común.
7
S sistema compatible indeterminado
8
S sistema compatible indeterminado
los tres planos pasan por una misma recta r
9
S sistema compatible indeterminado los tres planos coinciden .
10
S sistema incompatible
ningún subsistema de dos ecuaciones incompatible planos secantes dos a dos
11
S sistema incompatible
Y exactamente un subsistema de dos ecuaciones incompatible dos planos secantes y el tercero paralelo a uno de los anteriores
12
S sistema incompatible
y los tres subsistemas de dos ecuaciones incompatibles los tres planos son paralelos
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.