UNIDADES 16-18 METABOLISMO.

Slides:



Advertisements
Presentaciones similares
Respiración aerobia de la glucosa Catabolismo de lípidos
Advertisements

METABOLISMO DEL PIRUVATO
GLUCOLISIS CICLO DE KREBS TRANSPORTE DE ELECRONES FERMENTACIÓN
EL CATABOLISMO LÍPIDOS PROTEINAS.
CITOSOL: Componentes y función
Metabolismo intermediario
RESPIRACIÓN Y FOTOSÍNTESIS
CICLO DEL ACIDO CITRICO
RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP Los.
RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP Los.
Metabolismo celular.
CICLO DEL ACIDO CITRICO
CITOSOL: Componentes y función
CITOSOL: Componentes y función
RESPIRACIÓN CELULAR.
CITOSOL: Componentes y función
1. Conjunto de transformaciones químicas que ocurren en las células o el organismo que les permite mantener la vida. Anabolismo. Catabolismo. monosacáridos.
Fuente de energía para las células
(síntesis de Acetil-coA desde piruvato)
Metabolismo celular Respiración celular: Glucólisis, ciclo de Krebs y cadena respiratoria. Fermentación.
NUTRICIÓN Y METABOLISMO
LA RESPIRACIÓN CELULAR
Ciclo del Acido Cítrico
LA RESPIRACIÓN CELULAR
RESPIRACIÓN CELULAR Unidad 10
OBTENCIÓN DE ENERGIA Y METABOLISMO EN LOS SERES VIVOS
CATABOLISMO POR RESPIRACIÓN
Prof. Lorena Bruna Ing. en Alimentos
Tema 14 Respiración. Objetivo Comprender la respiración en su contexto metabólico, destacando las relaciones y características peculiares de las plantas.
LA RESPIRACIÓN CELULAR
EL METABOLISMO CELULAR
UNIDAD 6. METABOLISMO 6.1. Visión general del Metabolismo Celular.
Los seres vivos y sus procesos energéticos
La fábrica celular. Misión: obtener energía La célula como unidad básica de los seres vivos: La fábrica celular. Misión: obtener energía.
Ciclo del Acido Cítrico o Ciclo de Krebs
POR: Stefany Arango Nicolas Soler Deisy Peña 11-04
Fuente de energía para las células
FOSFORILACIÓN OXIDATIVA Y CADENA TRANSPORTADORA DE ELECTRONES
LA RESPIRACIÓN CELULAR
Respiración celular TEMA 3.
Capítulo 8 Producción de Energía.
Procesos catabólicos aerobios
Respiración Celular.
METABOLISMO GLUCÓLISIS Y RESPIRACIÓN CELULAR
Ciclo De Krebs Presentado por: Bernal Shannen
16.- LAS MITOCONDRIAS.
Respiración celular y fermentación
METABOLISMO MICROBIANO
Ciclo del Ácido Cítrico
TEMA 13: CATABOLISMO DE GLÚCIDOS Y LÍPIDOS.
RESPIRACIÓN Y FOTOSÍNTESIS
CATABOLISMO DE LA GLUCOSA
TEMA 11 CATABOLISMO AERÓBICO Y ANAERÓBICO
RESPIRACIÓN CELULAR (RC)
TEMA 5: 1. Concepto de nutrición. Nutrición autótrofa y heterótrofa. 2
GLUCÓLISIS Y RESPIRACIÓN CELULAR
Respiración celular Objetivo:
NUTRICIÓN Y METABOLISMO
Rutas que cosechan energía
TEMA 13 CATABOLISMO.
Mecanismos de obtención de energía en heterótrofos
RESPIRACIÓN CELULAR.
UNIDADES METABOLISMO.
Respiración celular Alumnos: Joaquin Morales Angel Moreno Curso: 8ªA
RESULTADO DE APRENDIZAJE: Explicar las reacciones
Tema 4. La fábrica celular. Misión: obtener energía.
CICLO DE KREBS.
1 Bloque 1: Metabolismo Tema 1: Los biocatalizadores y enzimas Tema 2: El metabolismo anabólico Tema 3: El metabolismo catabólico Realizado Prof: Alberto.
Glicólisis Ciclo de Krebbs. Ciclo del ácido tricarboxílico (Ciclo de Krebs) (Ciclo del ácido cítrico)
Metabolismo I : Catabolismo
Transcripción de la presentación:

UNIDADES 16-18 METABOLISMO

CATABOLISMO DEFINICIÓN CONJUNTO DE REACCIONES DE DEGRADACIÓN DE MOLÉCULAS ORGÁNICAS COMPLEJAS. OCURRE EN TODOS LOS ORGANISMOS. TIENE COMO FINALIDAD LA OBTENCIÓN DE ENERGÍA, PODER REDUCTOR Y PRECURSORES METABÓLICOS.

CATABOLISMO DEFINICIÓN DEGRADACIÓN DE MOLÉCULAS

CATABOLISMO DEFINICIÓN DEGRADACIÓN DE MOLÉCULAS

CATABOLISMO OCURRE EN TODOS LOS ORGANISMOS DEFINICIÓN El catabolismo es similar en organismos autótrofos y heterótrofos. Son reacciones de oxidación. La materia orgánica se oxida, bien por pérdida de átomos de H que se encuentran unidos al Carbono (deshidrogenación), bien por ganancia de átomos de oxígeno (oxigenación)

CATABOLISMO FINALIDAD OBTENCIÓN DE ENERGÍA UTILIZABLE POR LA CÉLULA: MEDIANTE DEGRADACIÓN OXIDATIVA. ATP

CATABOLISMO DEGRADACIÓN OXIDATIVA FINALIDAD La oxidación también se produce: ganando oxígeno (oxigenación) perdiendo electrones que acepta otro átomo, el cual se reduce. A estas reacciones de óxido-reducción se les llama reacciones redox.

CATABOLISMO FINALIDAD OBTENCIÓN DE ENERGÍA UTILIZABLE POR LA CÉLULA: MEDIANTE DEGRADACIÓN OXIDATIVA. ATP La síntesis de ATP se puede realizar de dos formas: a) Fosforilación a nivel de sustrato, mediante quinasas. b) Fosforilación por gradiente quimiosmótico mediante enzimas del tipo ATP-sintetasas. a b

CATABOLISMO FINALIDAD OBTENCIÓN DE PODER REDUCTOR PARA PROCESOS METABÓLICOS. MEDIANTE NUCLEÓTIDOS REDUCIDOS. NADH, NADPH Y FADH2 La pérdida de átomos de hidrógeno (deshidrogenación), libera hidrógenos que debe aceptar otra molécula. Estos átomos de hidrógeno son transportados por unas moléculas llamadas transportadoras de hidrógeno (NAD+, NADP+ y el FAD) hasta que llega finalmente a la molécula aceptora de hidrógeno, la cual se reduce.

CATABOLISMO FINALIDAD OBTENCIÓN DE PODER REDUCTOR PARA PROCESOS METABÓLICOS. El FAD puede ser parcialmente reducido a un radical estable FADH o bien completamente reducido a FADH2

El NAD es reducido a un radical estable NADH CATABOLISMO FINALIDAD OBTENCIÓN DE PODER REDUCTOR PARA PROCESOS METABÓLICOS. El NAD es reducido a un radical estable NADH

CATABOLISMO OXIDACIÓN DE COMPUESTOS 38

CATABOLISMO OXIDACIÓN DE COMPUESTOS

CATABOLISMO - Si se trata de oxígeno, la respiración es aerobia. OXIDACIÓN DE COMPUESTOS - FERMENTACIÓN: ocurre en el citoplasma. Oxidación incompleta de los compuestos orgánicos y el aceptor final de e- es otro compuesto orgánico. El ATP se forma por fosforilación a nivel de sustrato. - RESPIRACIÓN CELULAR: ocurre en mitocondrias. Oxidación completa de compuestos orgánicos. El ATP se forma por fosforilación oxidativa. Aceptor final de electrones inorgánico: - Si se trata de oxígeno, la respiración es aerobia. - Si se trata de compuestos como sulfatos, nitratos, etc, la respiración es anaerobia.

CATABOLISMO OXIDACIÓN DE COMPUESTOS Fermentación

CATABOLISMO OXIDACIÓN DE COMPUESTOS Respiración celular

CATABOLISMO CATABOLISMO DE BIOMOLÉCULAS Glúcidos Lípidos Proteínas Ácidos nucleicos

CATABOLISMO CATABOLISMO DE BIOMOLÉCULAS Glúcidos Lípidos Proteínas Ácidos nucleicos

CATABOLISMO CATABOLISMO DE GLÚCIDOS Glucólisis - Citoplasma Los procesos clave del metabolismo de glúcidos son: Glucólisis - Citoplasma Respiración celular aerobia – Mitocondria Fermentación – Citoplasma

CATABOLISMO CATABOLISMO DE GLÚCIDOS Glucólisis - Citoplasma Los procesos clave del metabolismo de glúcidos son: Glucólisis - Citoplasma Respiración celular aerobia – Mitocondria Fermentación – Citoplasma

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS Ruta metabólica muy antigua en los seres vivos. No requiere la presencia de oxígeno (anaerobia). Ruta universal en la inmensa mayoría de seres vivos. Síntesis de ATP por fosforilación a nivel de sustrato. Transcurre en 9 etapas agrupadas en 3 fases. Se producen 2 moléculas de ácido pirúvico (piruvato), 2 ATP (netos) y 2 NADH.

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE FOSFORILACIÓN (gasto ATP) FASE DE OXIDACIÓN (produce ATP y NADH) FASE DE RESTITUCIÓN DE ENERGÍA (produce ATP)

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS (2 moléculas) x2 PGAL: gliceraldehído-3-fosfato DHAP: dihidroxiacetona-fosfato Fosfoenolpirúvico :PEP

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE FOSFORILACIÓN

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE FOSFORILACIÓN

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE FOSFORILACIÓN

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE FOSFORILACIÓN

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE OXIDACIÓN H+

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE OXIDACIÓN x2

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE RESTITUCIÓN DE ENERGÍA x2 x2

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE RESTITUCIÓN DE ENERGÍA x2 x2 x2

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS FASE DE RESTITUCIÓN DE ENERGÍA x2 x2 x2 x2

Glucólisis

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS Tiene lugar en el CITOPLASMA. Produce ATP por fosforilación a nivel de sustrato. Baja eficacia energética (2 ATP / glucosa). Genera poder reductor (2 NADH). Suministra a la célula precursores metabólicos. No requiere la presencia de oxígeno (anaerobia). Ruta metabólica antigua y universal en los seres vivos (procariotas y eucariotas).

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS - GLUCÓLISIS

CATABOLISMO CATABOLISMO DE GLÚCIDOS Glucólisis - Citoplasma Los procesos clave del metabolismo de glúcidos son: Glucólisis - Citoplasma Respiración celular aerobia – Mitocondria Fermentación – Citoplasma

CATABOLISMO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Universal en los seres vivos (procariotas y eucariotas). Tiene lugar en las MITOCONDRIAS (eucariotas) o en CITOPLASMA Y MEMBRANA (procariotas). El aceptor final de e- es el oxígeno. Requiere la presencia de oxígeno (aerobia). Produce la oxidación completa del piruvato (CO2 y H2O). Alta eficacia energética (15ATP / piruvato). Actúan coenzimas con poder reductor (NADH y FADH2). Se produce GTP.

CATABOLISMO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA

CATABOLISMO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA

CATABOLISMO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA

CATABOLISMO ETAPAS CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA. Ciclo de Krebs (ácidos tricarboxílicos). Fosforilación oxidativa: Transpore electrónico. Formación de gradiente quimiosmótico. Síntesis de ATP.

CATABOLISMO ETAPAS CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA. Ciclo de Krebs (ácidos tricarboxílicos). Fosforilación oxidativa: Transpore electrónico. Formación de gradiente quimiosmótico. Síntesis de ATP.

CATABOLISMO Formación de acetil-CoA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA

CATABOLISMO Formación de acetil-CoA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA Complejo Multienzimático Piruvato-deshidrogenasa

CATABOLISMO Formación de acetil-CoA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA Coenzima A Un grupo adenina, un azúcar ribosa, ácido pantoténico (una vitamina del Comple jo “B”) y un grupo sufidrilo o tiol (-SH) que es el grupo activo,que reacciona con los grupos carboxilos (-COOH) para formar moleculas de acil CoA o con grupos acetilos (CH3-COOH) para formar Acetil CoA

Complejo multienzimático Piruvato-deshidrogenasa CATABOLISMO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA Complejo multienzimático Piruvato-deshidrogenasa

CATABOLISMO ETAPAS CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA. Ciclo de Krebs (ácidos tricarboxílicos). Fosforilación oxidativa: Transpore electrónico. Formación de gradiente quimiosmótico. Síntesis de ATP.

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 1: Citrato sintasa (De oxalacetato a citrato) El succinil-CoA es un tioéster a alta energía La citrato sintasa se sirve de un intermediario con tal unión a alta energía para llevar a cabo la fusión entre una molécula con dos átomos de carbono (acetil-CoA) y una con cuatro (oxalacetato). Como consecuencia de la unión entre las dos moléculas, el grupo tioéster (CoA) se hidroliza, formando así la molécula de citrato.

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 2: Aconitasa (De citrato a isocitrato) La aconitasa cataliza la isomerización del citrato a isocitrato.

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 3: Isocitrato deshidrogenasa (De isocitrato a alfacetoglutarato) La isocitrato deshidrogenasa mitocondrial es una enzima dependiente de la presencia de NAD+ . La enzima cataliza la oxidación del isocitrato a lo que genera una molécula de NADH a partir de NAD+. Se tiene una descarboxilación, es decir, la salida de una molécula de CO2, que conduce a la formación de α-cetoglutarato

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 4: α-cetoglutarato deshidrogenasa (De alfacetoglutarato a Succinil-CoA) Se produce una segunda reacción de descarboxilación (CO2), que lleva a la formación de succinil CoA. Se consigue un NADH .

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 5: Succinil-CoA sintetasa (De Succinil-CoA a succinato) La enzima succinil-CoA sintetasa se sirve de la energía desprendida para fosforilar un nucleótido difosfato purinico como el GDP a GTP

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 6: Succinato deshidrogenasa (De succinato a fumarato) La parte final del ciclo consiste en la reorganización de moléculas a cuatro átomos de carbono hasta la regeneración del oxalacetato. La primera reacción de oxidación es catalizada por el complejo enzimático de la succinato deshidrogenasa, la única enzima del ciclo que tiene como aceptor de hidrógeno al FAD en vez de al NAD+. Se obtiene FADH2

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 7: Fumarasa (De fumarato a L-malato) La fumarasa cataliza la adición en trans de un protón y un grupo OH- procedentes de una molécula de agua. La hidratación del fumarato produce L-malato.

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs Reacción 8: Malato deshidrogenasa (De L-malato a oxalacetato) La última reacción del ciclo de Krebs consiste en la oxidación del malato a oxalacetato. La reacción, catalizada por la malato deshidrogenasa, utiliza otra molécula de NAD+ como aceptor de hidrógeno, produciendo NADH.

Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO Ciclo de Krebs CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Ciclo de Krebs

CATABOLISMO ETAPAS CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA Formación de acetil-CoA. Ciclo de Krebs (ácidos tricarboxílicos). Fosforilación oxidativa: Transporte electrónico. Formación de gradiente quimiosmótico. Síntesis de ATP.

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico Complejo I El "complejo I" o NADH deshidrogenasa capta dos electrones del NADH y los transfiere a un transportador  denominado ubiquinona (Q). El Complejo I transloca cuatro protones a través de membrana, produciendo un gradiente de protones.

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico Ubiquinona (complejo II) El siguiente transportador de electrones es la ubiquinona generando una forma reducida QH2 (ubiquinol). Durante este proceso, cuatro protones son translocados a través de la membrana interna mitocondrial, desde la matriz hacia el espacio intermembrana.

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico Citobromo b-c1(Complejo III). El  complejo citocromo b-c1 obtiene dos electrones desde QH2 y se los transfiere a dos moléculas de citocromo-oxidasa, que es un transportador de electrones hidrosoluble que se encuentra en el espacio intermembrana de la mitocondria. Al mismo tiempo, transloca dos protones a través de la membrana por los dos electrones transportados desde el ubiquinol.

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico Citocromo oxidasa (Complejo IV). El complejo citocromo oxidasa capta los electrones de las moléculas de citocromo c y se transfieren al oxígeno (O2), para producir dos moléculas de agua (H2O). Al mismo tiempo se translocan cuatro protones al espacio intermembrana, por los cuatro electrones. Además "desaparecen" de la matriz 4 protones que forman parte del H2O.

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico ATP Sintetasa

CATABOLISMO FOSFORILACIÓN OXIDATIVA - Transporte electrónico CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA FOSFORILACIÓN OXIDATIVA - Transporte electrónico ATP sintetasa En la mitocondria es un complejo enzimático de más de 10 subunidades de, al menos, cuatro tipos diferentes. Puede verse en microfotografías electrónicas de la membrana interna. SEmejante en membrana de bacterias respiradoras

CATABOLISMO BALANCE ENERGÉTICO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA BALANCE ENERGÉTICO

CATABOLISMO BALANCE ENERGÉTICO - PROCARIOTAS CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA BALANCE ENERGÉTICO - PROCARIOTAS

CATABOLISMO BALANCE ENERGÉTICO CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA BALANCE ENERGÉTICO EUCARIOTAS

CATABOLISMO BALANCE ENERGÉTICO - EUCARIOTAS CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA BALANCE ENERGÉTICO - EUCARIOTAS

CATABOLISMO BALANCE ENERGÉTICO - COMPARATIVA CATABOLISMO DE GLÚCIDOS – RESPIRACIÓN AEROBIA BALANCE ENERGÉTICO - COMPARATIVA

CATABOLISMO CATABOLISMO DE GLÚCIDOS Glucólisis - Citoplasma Los procesos clave del metabolismo de glúcidos son: Glucólisis - Citoplasma Respiración celular aerobia – Mitocondria Fermentación – Citoplasma

CATABOLISMO CONCEPTOS CLAVE CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Ocurre en condiciones anaeróbicas (sin O2). Produce la oxidación incompleta de la glucosa. Síntesis de ATP por fosforilación a nivel de sustrato. Actúan coenzimas con poder reductor (NADH). Da distintos productos finales (ácido láctico etanol). Mecanismo de regeneración del NAD+ necesario en la glucólisis.

CATABOLISMO CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN CONCEPTOS CLAVE

CATABOLISMO CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN TIPOS

CATABOLISMO TIPOS CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN FERMENTACIÓN LÁCTICA FERMENTACIÓN ALCOHÓLICA

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica El NAD+ acepta e- para reducirse hasta NADH + H+. Posteriormente el NADH se oxida para regenerar NAD+. El piruvato acepta los dos e- desde el NADH y se reduce hasta dar lactato. Es realizada por bacterias. Puede ser homoláctica (sólo da láctato) o heteroláctica (produce lactato y otros compuestos).

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica HOMOLÁCTICA Ocurre en bacterias lácticas (Lactobacillus y Lactococcus) que son aerotolerantes (no lo usan pero lo resisten). Se producen por este tipo de procesos productos tan importantes como el queso, yogur y fermentos lácticos.

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica Lactobacillus Lactococcus

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica Lactobacillus Lactococcus

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica

CATABOLISMO Fermentación láctica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación láctica HETEROLÁCTICA Ocurre en géneros bacterianos como Leuconostoc y algunos de Lactobacillus. Se utiliza industrialmente para obtener fermentados de la leche: como el chucrut o sauerkraut (col fermentada). Leuconostoc

CATABOLISMO TIPOS CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN FERMENTACIÓN LÁCTICA FERMENTACIÓN ALCOHÓLICA

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica El NAD+ acepta e- para reducirse hasta NADH + H+. Posteriormente el NADH se oxida para regenerar NAD+. El piruvato sufre descarboxilación para dar acetaldehído (similar a la respiración aerobia). El acetaldehído acepta los dos e- desde el NADH y se reduce hasta dar etanol. Es realizada por levaduras.

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica

CATABOLISMO Fermentación alcohólica CATABOLISMO DE GLÚCIDOS – FERMENTACIÓN Fermentación alcohólica

CATABOLISMO BALANCE ENERGÉTICO CATABOLISMO DE GLÚCIDOS – FERMENTACIONES BALANCE ENERGÉTICO ANAEROBICO

CATABOLISMO BALANCE ENERGÉTICO CATABOLISMO DE GLÚCIDOS – FERMENTACIONES BALANCE ENERGÉTICO

CATABOLISMO CATABOLISMO DE GLÚCIDOS

CATABOLISMO BALANCE ENERGÉTICO CATABOLISMO DE GLÚCIDOS – FERMENTACIONES BALANCE ENERGÉTICO

CATABOLISMO + 7,3 Kcal/mol BALANCE ENERGÉTICO CATABOLISMO DE GLÚCIDOS 1 mol de glucosa 36 moles ATP 262,8 Kcal 1 mol de glucosa 2 moles ATP 14,6 Kcal 9 g glucosa = 0,05 moles = 13 Kcal 1 mol de glucosa = 180 g de glucosa 100 g glucosa = 0,55 moles = 144 Kcal

CATABOLISMO CATABOLISMO DE BIOMOLÉCULAS Glúcidos Lípidos Proteínas Ácidos nucleicos

CATABOLISMO CATABOLISMO DE LÍPIDOS Los procesos clave del metabolismo de glúcidos son: Digestión química: hidrólisis intestinal Degradación de la glicerina β-oxidación de ácidos grasos

CATABOLISMO CATABOLISMO DE LÍPIDOS Los procesos clave del metabolismo de glúcidos son: Digestión química: hidrólisis intestinal Degradación de la glicerina β-oxidación de ácidos grasos

CATABOLISMO CATABOLISMO DE LÍPIDOS – HIDRÓLISIS ENZIMÁTICA LIPASAS

CATABOLISMO CATABOLISMO DE LÍPIDOS – HIDRÓLISIS ENZIMÁTICA LIPASAS

CATABOLISMO CATABOLISMO DE LÍPIDOS Los procesos clave del metabolismo de glúcidos son: Digestión química: hidrólisis intestinal Degradación de la glicerina β-oxidación de ácidos grasos

CATABOLISMO CATABOLISMO DE LÍPIDOS – DEGRADACIÓN GLICERINA

CATABOLISMO CATABOLISMO DE LÍPIDOS Los procesos clave del metabolismo de glúcidos son: Digestión química: hidrólisis intestinal Degradación de la glicerina β-oxidación de ácidos grasos

CATABOLISMO CARACTERÍSTICAS CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos CARACTERÍSTICAS Rinden más cantidad de ATP que la glucosa. Tiene lugar en la matriz mitocondrial. Produce acetil-CoA. El acetil-CoA se incorpora al ciclo de Krebs y da lugar a fosforilación oxidativa. Los ácidos grasos atraviesan la membrana mitocondrial unidos al aminoácido carnitina. Se basa en la oxidación del carbono β antes de la escisión del carbono α. Se requiere ATP para activar los ácidos grasos (2).

CATABOLISMO CARACTERÍSTICAS CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos CARACTERÍSTICAS β α β α β α β α

CATABOLISMO Activación de ácidos grasos CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos Activación de ácidos grasos El segundo carbono (carbono beta) contando a partir del grupo ácido (carbono alfa) se oxida mediante el siguiente proceso. En primer lugar, la coenzima A se une al extremo del ácido graso mediante gasto de una molécula de ATP, (utiliza la energía disponible en sus dos enlaces). Ocurre en el citosol. La reacción transcurre en 2 etapas. La degradación de ácidos grasos ocurre en la mitocondria. Para poder entrar en la mitocondria es por lo que ha de activarse. Se requiere 1 molécula de ATP, pero como esta es hidrolizada a AMP + 2 (P), energéticamente se considera que se necesitan 2 ATP.

CATABOLISMO Transporte hasta la matriz mitocondrial CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos Transporte hasta la matriz mitocondrial

CATABOLISMO ETAPAS CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos Deshidrogenación: reacción de oxidación mediante formación de doble enlace entre los carbonos α y β. Se produce FADH2 Hidratación: adición de agua al doble enlace anterior y formación de grupo hidroxilo en carbono β. Oxidación: oxidación del grupo alcohol a grupo ceto y formación de β-ceto-acil-CoA. Se produce NADH Tiolisis: Ruptura de enlace entre carbono α y β con entrada de CoA. Se produce un acetil-CoA y un acil-CoA con dos carbonos menos.

CATABOLISMO ETAPAS - Deshidrogenación CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos ETAPAS - Deshidrogenación A continuación se produce una deshidrogenación, liberándose un átomo de H de cada uno de los C alfa y beta. Los incorpora el FAD, pasando a FADH2, que los cede en la cadena respiratoria.

CATABOLISMO ETAPAS - Hidratación CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos ETAPAS - Hidratación H2O H2O Hidratación del doble enlace (se añade una molécula de agua) por la enoil-CoA hidratasa para formar 3-L-hidroxiacil-CoA.

CATABOLISMO ETAPAS - Oxidación CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos ETAPAS - Oxidación Nueva deshidrogenación. Se pierden los átomos de H del carbono beta. Los dos electrones son tomados (en forma de H) por el NAD+, que pasa a NADH, el cual los cede en la cadena transportadora de electrones.

CATABOLISMO ETAPAS – Tiolisis CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos ETAPAS – Tiolisis Finalmente se añade otra molécula de coenzima A al carbono beta. Se producen dos fragmentos, uno el acetil-co-A, y el otro un acil- co- A que tiene dos átomos de C menos que el ácido graso original. Este último sufre nuevas “beta oxidaciones” formando sucesivas moléculas de acetil-co-A. Cada acetil-Co-A entra en el ciclo de krebs.

CATABOLISMO CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos ETAPAS

CATABOLISMO CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos ETAPAS

CATABOLISMO BALANCE ENERGÉTICO CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos BALANCE ENERGÉTICO La función de la oxidación de los ácidos grasos es generar energía metabólica. Cada vuelta de la  oxidación produce un NADH, un FADH2 y un acetil-CoA. La oxidación del acetil-CoA en el ciclo de Krebs genera NADHs y FADHs adicionales que son reoxidados a través de la fosforilación oxidativa para formar ATP. Por lo tanto la oxidación completa de una molécula de ácido graso es un proceso altamente exergónico, produce un número elevado de ATPs.

CATABOLISMO BALANCE ENERGÉTICO - EJEMPLO CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos BALANCE ENERGÉTICO - EJEMPLO La oxidación completa del ácido palmítico (que contiene 16 átomos de carbono), involucra siete vueltas de la  oxidación, lo cual produce: 7FADH2 7NADH 8acetil-CoA La oxidación de estos acetil-CoA a su vez produce en el ciclo de krebs: 8GTP 24NADH 8FADH2 Por lo tanto, la fosforilación oxidativa de 31 NADH producen 93 ATP y la de 15 FADH2 otros 30 ATP. Se restan 2 ATP EQUIVALENTES de la formación del acil- CoA (activación), Por tanto, la oxidación completa de una molécula de palmitato produce: 129 ATPs.

CATABOLISMO BALANCE ENERGÉTICO - EJEMPLO CATABOLISMO DE LÍPIDOS – β-oxidación a. grasos BALANCE ENERGÉTICO - EJEMPLO Calcula el balance energético de la β-oxidación completa del ácido esteárico (18 C): 8FADH2 x 2 ATP = 16 ATP 8NADH x 3 ATP = 24 ATP 9acetil-CoA La oxidación de estos acetil-CoA a su vez produce en el ciclo de krebs: 9GTP= 9 ATP (9x3) 27 NADH x 3ATP = 81 ATP 9FADH2 x 2 ATP = 18 ATP Por lo tanto, se produce 148 ATP; restando los 2ATP equivalentes necesarios para la formación del acil-CoA, la oxidación completa de una molécula de ácido esteárico produce 146 ATPs.

CATABOLISMO CATABOLISMO DE BIOMOLÉCULAS Glúcidos Lípidos Proteínas Ácidos nucleicos LEER EN LIBRO DE TEXTO