INECUACIONES.

Slides:



Advertisements
Presentaciones similares
Desigualdades Una desigualdad es una oración conteniendo < (menor que), > (mayor que), ≤ (menor o igual que), ≥ (mayor o igual que) o ≠ (no es igual)
Advertisements

INECUACIONES DE PRIMER GRADO
Ecuaciones de primer grado: resolución
2.1 – Expresiones algebraicas
BIENVENIDO A NUESTRA CLASE DE MATEMATICA
Inecuaciones CUADRÁTICAS
Desigualdades e Inecuaciones
INECUACIONES.
Factorización (productos notables)
ECUACIONES CUÁDRATICAS RACIONALES
Sistemas de ecuaciones
Ecuaciones 3º de ESO.
ECUACIONES LINEALES Y SUS PROPIEDADES
Universidad Autónoma San Francisco
Operaciones con Polinomios
Ecuaciones Algebraicas
Desigualdades e Inecuaciones
SISTEMAS DE ECUACIONES
Docente Adalberto Paternina A
Desigualdades lineales en una variable
Intervalos y Desigualdades
Inecuaciones. Sistemas de inecuaciones.
Sistemas de ecuaciones
TEMA 7 ECUACIONES. SISTEMAS DE ECUACIONES
“Ecuaciones de primer grado y sistemas de ecuaciones”
Universidad de Managua U de M
Matemáticas Aplicadas CS I
Cuaderno de Matemática
Tema V Programación Lineal
“Ecuaciones de primer grado”
Investigación operativa
Ecuaciones Algebraicas
POLINOMIOS p(x) = p0 + p1x + p2x2 + p3x3 + … + pnxn pn ≠ 0
INECUACIONES Y SISTEMAS
Inecuaciones en los Reales
INECUACIONES DE PRIMER Y SEGUNDO GRADO
¿Cuánto vale x si la balanza está equilibrada?
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 5 INECUACIONES Y SISTEMAS.
INECUACIONES LINEALES
INECUACIONES Tema 4 * 4º ESO Opc Angel Prieto Benito
TEMA 1 Sistemas de ecuaciones lineales
ÁLGEBRA.
MATE 3011 – PRESENTACION #6 Desigualdades.
Operaciones Algebraicas
Ecuaciones Lineales.
Bienvenidos a la séptima Conferencia Magistral
ECUACIONES Y SISTEMAS Tema 3 * 4º ESO Opc Angel Prieto Benito
ESPAD III * DÍA 12 ECUACIONES LINEALES.
Ecuaciones.
Matemáticas 1º Bachillerato CT
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
Actualizado agosto 2010 por Guiomar Mora de Reyes
“CURSO PROPEDÉUTICO PARA EL MEJORAMIENTO DEL PENSAMIENTO MATEMÁTICO”
Matemáticas II. Profesor: Ing. Yadhira M. Rangel Carrillo.
QUINTA CONFERENCIA Lugar: Oficinas Generales Fecha: 15 de Diciembre de 2007 Conferencista: Prof. Carlos Betancourt Monroy Centro de Estudios Científicos.
2.1 Ecuaciones lineales Una ecuación en la que el mayor exponente de la o las incógnitas es 1 es una ecuación de primer grado o ecuación lineal. Si el.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES ELEMENTALES U.D. 6 * 1º BCT.
Guayaquil, 12 de Junio del 2015 Tema: Inecuaciones Lineales Destreza: Resolver inecuaciones lineales en forma analítica y gráfica Objetivo: Usar las propiedades.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 U.D. 5 * 1º BCT SISTEMAS DE ECUACIONES E INECUACIONES.
Damas chinas (Mzelle Laure)
Ing. Haydeli del Rosario Roa Lopez
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 SISTEMAS DE ECUACIONES U.D. 6 * 3º ESO E.AC.
Álgebra, ecuaciones y sistemas
RESOLUCION DE ECUACIONES DE PRIMER GRADO
MAPA DE NAVEGACIÓN INECUACIONES UNIDAD 8 Índice Teoría Y Ejemplos.
@ Angel Priet Benito Matemáticas Aplicadas CS I 1 Si tenemos una ecuación de la forma y = a.x 3 + b.x 2 + c.x + d, entonces podemos decir que es una función.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 RESOLUCIÓN DE SISTEMAS U.D. 1 * 2º BCS.
 Una ecuación de segundo grado [1] [2] o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo.
Matemáticas 2º Bach. Sociales
Intervalos y Desigualdades
Transcripción de la presentación:

INECUACIONES

DESIGUALDAD: INECUACIÓN: Es una expresión que indica que una cantidad es mayor o menor que otra. INECUACIÓN: Es una desigualdad en la que hay una o mas cantidades desconocidas (incógnitas) y que sólo se verifica para determinados valores de las incógnitas. Ejemplo: x < 2  ( - oo , 2 ) x ≥ - 4  [ - 4 , + oo )

Inecuaciones con una incógnita Una inecuación es toda desigualdad en la que intervienen incógnitas o valores desconocidos. En las desigualdades se emplean símbolos que es necesario saber leer e interpretar. Signo: Se lee: x < - 3 x es siempre MENOR que - 3 x ≤ 5 x es MENOR o IGUAL que 5 x > 7 x es siempre MAYOR que 7 x ≥ - 2 x es MAYOR o IGUAL que - 2

Inecuación lineal Ejemplos: 5 Corresponde a una desigualdad condicionada, es decir, se busca el conjunto de valores que al reemplazarlos en la variable, cumpla con la desigualdad. Ejemplos: 7 √5-x a) La expresión representa un número real si: 5 - x > 0 5 > x x es un número real menor que 5, o bien, x Є ] -∞, 5 [ Gráficamente: 5 -∞ +∞

b) x 2 6x -2 5 ≥ 1 - (Multiplicando por 10) (Simplificando) 10 ∙ 6x -2 5 x 2 - 10 ∙ 10 ≥ 2(6x – 2) ≥ 5x - 10 (Desarrollando) 12x – 4 ≥ 5x - 10 12x – 5x ≥ 4 - 10 7x ≥ -6 7 x ≥ -6

Se cumple para todo x mayor o igual que 7 -6 , ,+∞ o bien, x Є 7 -6 Gráficamente: -∞ +∞ 7 -6

IR c) 7x – 8 ≥ 4x – 16 + 3x + 4 7x – 8 ≥ 7x - 12 – 8 ≥ - 12 En este caso, la incógnita se ha eliminado. Sin embargo, la desigualdad resultante es verdadera. Esto significa que la inecuación se cumple para cualquier x en los reales. Gráficamente: +∞ -∞ IR

d) 6x + 11 2 < 3x / ∙ 2 6x + 11 < 6x 11 < 0 En este caso, la incógnita también se ha eliminado; pero la desigualdad resultante es FALSA. Esto significa que la desigualdad no se cumple, ya que NO existe un x real que satisfaga la inecuación. El conjunto solución de la inecuación es el conjunto vacío:

SOLUCIONES DE UNA INECUACIÓN Las soluciones de una inecuación son los valores que pueden tomar las incógnitas, tales que al sustituirlos en la inecuación la desigualdad sea cierta. Ejemplos: x > 4  x = 5 es solución; también x = 6, x = 7, etc x2 – 4 < 0  x = 1 es solución; también x = - 1 , x = 0, etc EQUIVALENCIA DE INECUACIONES Dos o más inecuaciones son equivalentes cuando tienen la misma solución. x > 4 y x – 4 > 0 son inecuaciones equivalentes. x2 – 4 < 0 y (x + 2).(x – 2) < 0 son equivalentes.

GRÁFICAS DE SOLUCIONES DE INECUACIONES: 1.- 2 + x ≥ 4  x ≥ 4 – 2  x ≥ 2 Solución = [ 2, + oo ) Como x puede valer 2, se empleará intervalos semicerrados. En la gráfica, la inclusión del 2 se representa por un punto sólido. 2.- 2x < x -5  2x – x < - 5  x < - 5 Solución = ( - oo, - 5 ) Como x no puede valer - 5, se empleará intervalos abiertos. En la gráfica, la exclusión del - 5 se representa por un punto hueco. R 2 R - 5

Resolución de inecuaciones PRINCIPIOS DE EQUIVALENCIA Si a los dos miembros de una inecuación se les suma o resta un mismo número o expresión algebraica, resulta una inecuación equivalente a la dada. Si x – 3 > 1  x – 3 + 3 > 1 + 3  x > 4 Si a los dos miembros de una inecuación se les multiplica por un número real positivo, resulta una inecuación equivalente a la dada. Si x / 3 < 5  3. x / 3 < 3. 5  x < 15 Si a los dos miembros de una inecuación se les multiplica por un número negativo, resulta una inecuación equivalente a la dada, pero con el signo de desigualdad contrario al de la inecuación original. Si - x < 3  (- 1).( - x ) > (- 1).3  x > - 3

RESOLUCIÓN DE INECUACIONES Sean las inecuaciones: 1.- 2 + x ≥ 4 2.- 2x ≤ x -5 3.- x > x + 2 SOLUCIONES: 1.- 2 + x ≥ 4  x ≥ 4 – 2  x ≥ 2 Solución = [ 2, + oo ) 2.- 2x < x -5  2x – x < - 5  x < - 5 Solución = ( - oo, - 5 ) 3.- x > x + 2  x - x > 2  0 > 2 FALSO Solución = Ø (Conjunto vacío)

RESOLUCIÓN DE INECUACIONES Sea la inecuación: 2 – x x – 3 4.- -------- – ----------- + 2 > x 5 6 SOLUCIÓN: 6(2 – x) – 5( x – 3 ) 4.- ----------------------------- + 2 > x 30 4.- 12 – 6x – 5x + 15 + 60 > 30x 87 > 41x  x < 87/41 Solución = (- oo , 87/41)

RESOLUCIÓN DE INECUACIONES Sean las inecuaciones: 5.- x – 1 x ------------ + 2 < ------ 5 3 SOLUCIONES: 5 3.(x – 1) + 30 5.x ----------------------- < --------- 15 15 5.- 3.(x – 1) + 30 < 5.x 5.- 3.x – 3 + 30 < 5.x 5.- – 3 + 30 < 5.x – 3.x 5.- 27 < 2.x  x > 13,5 5.- Solución = ( 13,5 , oo )

RESOLUCIÓN DE INECUACIONES Sean las inecuaciones: 6.- 2 ------- + 3 ≥ 4 x + 1 SOLUCIONES: 6.- 2 + 3.(x+1) ----------------- - 4 ≥ 0 6.- 2 + 3.(x+1) – 4.(x + 1) ----------------------------- ≥ 0 6.- 1 – x -------- ≥ 0  Las raíces de numerador y denominador son el 1 y el -1 6.- Se estudia el signo en (-oo, -1), (- 1, 1] y [1, +oo) 6.- Solución = ( - oo, 1 ] – { - 1}

Inecuaciones CUADRÁTICAS Una inecuación de segundo grado o inecuación cuadrática es la que tiene la forma: ax2 + bx + c ≤ 0 , ( o ≥ 0, o > 0, o < 0) Siendo a > 0 siempre. Para resolverlas se hallan las dos raíces, tomada la expresión como una ecuación, x1 y x2 . Luego se factoriza el polinomio característico: (x - x1).( x - x2 ) ≤ 0 ó (x - x1).( x - x2 ) ≥ 0 Y por último se halla el signo de cada factor en cada uno de los siguientes intervalos: (-oo, x1), ( x1 , x2 ) y ( x2, +oo) La solución será un intervalo abierto o cerrado si las raíces halladas, x1 y x2 , pertenecen o no a la solución del sistema.

Ejemplo 1 - + + - - + Resuelve la inecuación: x2 - 5x + 6 ≤ 0 Se hallan las dos raíces: x1 = 2 , x2 = 3 Se factoriza el polinomio: (x - 2).( x - 3 ) ≤ 0 Se halla el signo de cada factor: - oo 2 3 +oo ( x – 2 ) - + + - - + ( x – 3 ) Productos + - + En [ 2, 3 ] el producto es NEGATIVO ( < 0 ), luego Solución = x ε [ 2, 3 ]

Ejemplo 2 - - + - + + Resuelve la inecuación: x2 + 3x - 10 > 0 Se hallan las dos raíces: x1 = 2 , x2 = - 5 Se factoriza el polinomio: (x - 2).( x + 5 ) > 0 Se halla el signo de cada factor: - oo - 5 2 +oo ( x – 2 ) - - + - + + ( x + 5 ) Productos + - + En (-oo.-5) y en ( 2, +oo) el producto es POSITIVO ( > 0 ), luego Solución = { V x ε R / x ε ( -oo, -5 ) U ( 2, +oo ) }

Ejemplo 3 - + - + Resuelve la inecuación: x2 + 2x + 1 < 0 Se hallan las dos raíces: x1 = -1 , x2 = - 1 Se factoriza el polinomio: (x + 1 ).( x + 1 ) < 0 Se halla el signo de cada factor: - oo - 1 +oo ( x +1 ) - + - + ( x + 1 ) Productos + + No hay ningún intervalo cuyo producto sea NEGATIVO, luego Solución = Ø