Probabilidad y Estadística

Slides:



Advertisements
Presentaciones similares
Nociones de probabilidad
Advertisements

Bioestadística,2006.
DEFINICIONES       Experiencia Aleatoria: es aquella cuyo resultado depende del azar: ( lanzto de un dado, una moneda, extraer una bola, una carta, etc.)
DEFINICIONES       Experiencia Aleatoria: es aquella cuyo resultado depende del azar: ( lanzto de un dado, una moneda, extraer una bola, una carta, etc.)
Tema 3: Probabilidad Bioestadística.
Probabilidad y Combinatoria
Tema 4: Introducción a Probabilidad
Probabilidad.
SUCESOS Y SUS PROBABILIDADES
Tema 4: Probabilidad (recordatorio)
EXPERIMENTO, ESPACIO MUESTRAL Y EVENTOS
1.2 Variables aleatorias..
Introducción a la Probabilidad
Estadística Inferencial
PROBABILIDAD Y ESTADISTICA
1.  ¿Cuál es la probabilidad de aprobar Estadística?  ¿Cuál es la probabilidad de no encontrarme con un corte de ruta cuando voy a clase?  Todos los.
Contenido General - Evaluación
CÁLCULO DE PROBABILIDADES
E Experimentos aleatorios. Espacio muestral
Probabilidad. Variables aleatorias.
Bioinformática: Fundamentos y aplicaciones de actualidad Curso de verano 2005 Revisión de algunos modelos probabilísticos de evolución genética (Procesos.
TEMA 5 PROBABILIDAD.
Conceptos Básicos de Probabilidad
2. Probabilidad Dominar la fortuna
Tema 5: Probabilidad Lecturas recomendadas:
Probabilidad
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos Aleatorios. 2) Espacio Muestral.
Estadística - Probabilidad
PROBABILIDAD.
Inferencia Estadística: 5. Probabilidad: Axiomas y Modelos
Inferencia Estadística: 6. Probabilidad Condicional
ESTADISTICA II PARTE PRIMERA: PROBABILIDAD Y VARIABLES ALEATORIAS
María Macías Ramírez y David Marín Pérez
PROBABILIDAD.
ESTADISTICA I CSH M. en C. Gal Vargas Neri.
INTRODUCCIÓN A LA PROBABILIDAD
Un panorama de conceptos probabilísticos
Sesión 09: Teoría de las Probabilidades
Probabilidades Históricamente, el propósito original de la teoría de probabilidades se limitaba a la descripción y estudios de juegos de azar. Girolamo.
Unidad II. Probabilidad
Probabilidades Objetivos de la clase Construidas definiciones básicas
1º BACHILLERATO | Matemáticas © Oxford University Press España, S.A Hacer clic en la pantalla para avanzar EXPERIENTO ALEATORIO. SUCESOS Un experimento.
Tema 2: ¡Eso depende! El azar depende de muchos factores.
Combinatoria y Probabilidad
Objetivo del Cálculo de Probabilidades: Cálculo de Probabilidades
Bioestadística Tema 4: Probabilidad Bioestadística. U. Málaga.
Laboratorio de Estadística administrativa
1 2  La Teoría de la Probabilidad constituye la base o fundamento de la Estadística, ya que las ingerencias que hagamos sobre la población o poblaciones.
Tema 5 PROBABILIDAD.
TEMA 5 PROBABILIDAD.
Matemáticas, juego,...fortuna: ¿Jugamos?
Probabilidades y Estadísticas. Conceptos trabajados en años anteriores…  Variable Aleatoria: Es toda magnitud cuyos valores se obtienen en mediciones.
Concepto de Probabilidad
PROBABILIDADES.
Tema : Probabilidad.
Jugadores de cartas. Caravaggio.
PROBABILIDAD CONDICIONAL Y TEOREMA DE BAYES
Santiago Fernández Asesor matemáticas, Berritzegune de Bilbao Eibar, 6, Octubre, 2011 El azar, la probabilidad,… 3 Este material no es original, está compuesto.
II Unidad: introducción a las Probabilidades y modelos de probabilidad
Probabilidad1 PROBABILIDAD Y ESTADISTICA Tema 2: Probabilidad.
Villamizar Luis Miguel. Variables aleatorias Se denomina variable aleatoria al conjunto imagen de esta correspondencia, es decir, al conjunto de los números.
PROBABILIDAD Por Jorge Sánchez. El espacio muestral asociado a un experimento aleatorio simple está formado por el conjunto de todos los resultados que.
Capítulo 3 Modelo de Probabilidades II Lecturas: Recomendadas 1.- B. Eyzaguirre, C. Le Foulen, X. Hinzpeter: “Los chilenos no saben lo que leen”
CLASE 2 Definiciones de probabilidad.
Probabilidad y estadística
Tema 4: Probabilidad (recordatorio)
Estadística Inferencial
Estadística Inferencial
Tema 4: Probabilidad (recordatorio)
Probabilidad1 PROBABILIDAD Y ESTADISTICA Tema 2: Probabilidad.
Transcripción de la presentación:

Probabilidad y Estadística Tema : Probabilidad Probabilidad y Estadística Probabilidad

¿Cuál es la probabilidad de aprobar Estadística? ¿Cuál es la probabilidad de no encontrar estacionamiento cuando voy a clase? Todos los días nos hacemos preguntas sobre probabilidad e incluso los que hayamos visto poco de la materia en cursos anteriores, tenemos una idea intuitiva lo suficientemente correcta para lo que necesitamos de ella en este curso. En este tema vamos a: Ver qué entendemos por probabilidad. Ver algunas reglas de cálculo. Ver cómo aparecen las probabilidades. Aplicarlo a algunos conceptos nuevos de interés. Probabilidad y Estadística Probabilidad

Nociones de probabilidad Frecuentista (objetiva): Probabilidad de un suceso es la frecuencia relativa (%) de veces que ocurriría el suceso al realizar un experimento repetidas veces. Subjetiva (bayesiana): Grado de certeza que se posee sobre un suceso. Es personal. En ambos tipos de definiciones aparece el concepto de suceso. Vamos a recordar qué son y algunas operaciones que se pueden realizar con sucesos. Probabilidad y Estadística Probabilidad

Sucesos E espacio muestral E espacio muestral A A’ E espacio muestral Cuando se realiza un experimento aleatorio diversos resultados son posibles. El conjunto de todos los resultados posibles se llama espacio muestral (E). Se llama suceso a un subconjunto de dichos resultados. Se llama suceso contrario (complementario) de un suceso A, A’, al formado por los elementos que no están en A Se llama suceso unión de A y B, AUB, al formado por los resultados experimentales que están en A o en B (incluyendo los que están en ambos. Se llama suceso intersección de A y B, A∩B o simplemente AB, al formado por los elementos que están en A y B E espacio muestral A A’ E espacio muestral A B E espacio muestral A B E espacio muestral A B UNIÓN INTERS. Probabilidad y Estadística Probabilidad

Definición de probabilidad Se llama probabilidad a cualquier función, P, que asigna a cada suceso A un valor numérico P(A), verificando las siguientes reglas (axiomas) P(E)=1 0≤P(A) ≤1 P(AUB)=P(A)+P(B) si A∩B=Ø Ø es el conjunto vacío. Podemos imaginar la probabilidad de un subconjunto como el tamaño relativo con respecto al total (suceso seguro) E espacio muestral 100% E espacio muestral A B Probabilidad y Estadística Probabilidad

Probabilidad condicionada Se llama probabilidad de A condicionada a B, o probabilidad de A sabiendo que pasa B: E espacio muestral A “tamaño” de uno respecto al otro B Error frecuentíiiiiiisimo: No confundir probabilidad condicionada con intersección. En ambos medimos efectivamente la intersección, pero… En P(A∩B) con respecto a P(E)=1 En P(A|B) con respecto a P(B) Probabilidad y Estadística Probabilidad

Intuir la probabilidad condicionada P(A) = 0,25 P(B) = 0,10 P(A∩B) = 0,10 P(A) = 0,25 P(B) = 0,10 P(A∩B) = 0,08 ¿Probabilidad de A sabiendo que ha pasado B? P(A|B)=1 P(A|B)=0,8 Probabilidad y Estadística Probabilidad

Intuir la probabilidad condicionada P(A) = 0,25 P(B) = 0,10 P(A∩B) = 0,005 P(A) = 0,25 P(B) = 0,10 P(A∩B) = 0 ¿Probabilidad de A sabiendo que ha pasado B? P(A|B)=0,05 P(A|B)=0 Probabilidad y Estadística Probabilidad

Algunas reglas de cálculo prácticas Cualquier problema de probabilidad puede resolverse en teoría mediante aplicación de los axiomas. Sin embargo, es más cómodo conocer algunas reglas de cálculo: P(A’) = 1 - P(A) P(AUB) = P(A) + P(B) - P(AB) P(AB) = P(A) P(B|A) = P(B) P(A|B) Prob. de que pasen A y B es la prob. de A y que también pase B sabiendo que pasó A. Probabilidad y Estadística Probabilidad

Independencia de sucesos Dos sucesos son independientes si el que ocurra uno, no añade información sobre el otro. A es independiente de B  P(A|B) = P(A)  P(AB) = P(A) P(B) Probabilidad y Estadística Probabilidad

Sistema exhaustivo y excluyente de sucesos Son una colección de sucesos A1, A2, A3, A4… Tales que la unión de todos ellos forman el espacio muestral, y sus intersecciones son disjuntas. A1 A2 Suceso seguro A1 A2 A3 A4 A3 A4 Probabilidad y Estadística Probabilidad

Divide y vencerás Todo suceso B, puede ser descompuesto en componentes de dicho sistema. A1 A2 B = (B∩A1) U (B∩A2 ) U ( B∩A3 ) U ( B∩A4 ) B Suceso seguro A1 A2 A3 A4 B A3 A4 Nos permite descomponer el problema B en subproblemas más simples. Probabilidad y Estadística Probabilidad

Teorema de la probabilidad total Si conocemos la probabilidad de B en cada uno de los componentes de un sistema exhaustivo y excluyente de sucesos, entonces… … podemos calcular la probabilidad de B. A1 A2 B P(B|A1) Suceso seguro A1 A2 A3 A4 B P(A1) P(B|A2) P(A2) A3 A4 P(B|A3) P(A3) P(A4) P(B|A4) P(B) = P(B∩A1) + P(B∩A2 ) + P( B∩A3 ) + P( B∩A4 ) =P(A1) P(B|A1) + P(A2) P(B|A2)+ … Probabilidad y Estadística Probabilidad

¿Qué porcentaje de fumadores hay? Ejemplo (I): En esta aula el 70% de los alumnos son mujeres. De ellas el 10% son fumadoras. De los hombres, son fumadores el 20%. ¿Qué porcentaje de fumadores hay? P(F) = P(M∩F) + P(H∩F) = P(M)P(F|M) + P(H)P(F|H) =0,7 x 0,1 + 0,3 x 0,2 = 0,13 =13% T. Prob. Total. Hombres y mujeres forman un sist. Exh. Excl. de sucesos Fuma 0,1 Mujer 0,9 0,7 No fuma Estudiante Fuma 0,2 0,3 Hombre Los caminos a través de nodos representan intersecciones. Las bifurcaciones representan uniones disjuntas. 0,8 No fuma Probabilidad y Estadística Probabilidad

Teorema de Bayes Si conocemos la probabilidad de B en cada uno de los componentes de un sistema exhaustivo y excluyente de sucesos, entonces… …si ocurre B, podemos calcular la probabilidad (a posteriori) de ocurrencia de cada Ai. A1 A2 B A3 A4 donde P(B) se puede calcular usando el teorema de la probabilidad total: P(B)=P(B∩A1) + P(B∩A2 ) + P( B∩A3 ) + ( B∩A4 ) =P(B|A1) P(A1) + P(B|A2) P(A2) + … Probabilidad y Estadística Probabilidad

¿Qué porcentaje de fumadores hay? Ejemplo (II): En este aula el 70% de los alumnos son mujeres. De ellas el 10% son fumadoras. De los hombres, son fumadores el 20%. ¿Qué porcentaje de fumadores hay? P(F) = =0,7 x 0,1 + 0,3 x 0,2 = 0,13 (Resuelto antes) Se elije a un individuo al azar y es… fumador ¿Probabilidad de que sea un hombre? Fuma 0,1 Mujer 0,7 0,9 No fuma Estudiante Fuma 0,2 0,3 Hombre 0,8 No fuma Probabilidad y Estadística Probabilidad

¿Qué hemos visto? Álgebra de sucesos Probabilidad Unión, intersección, complemento Probabilidad Nociones Frecuentista Subjetiva o Bayesiana Axiomas Probabilidad condicionada Reglas de cálculo Complementario, Unión, Intersección Independencia de sucesos Sistema exhaustivo y excluyente de sucesos Teorema probabilidad total. Teorema de Bayes Probabilidad y Estadística Probabilidad