UN Nombre: Fabian Andres Robayo Quinbtero Fecha: 14/06/2015

Slides:



Advertisements
Presentaciones similares
DUALIDAD ONDA - PARTÍCULA EN LA LUZ JUAN PABLO OSPINA LÓPEZ COD
Advertisements

Unidad 1 Estructura atómica de la materia. Teoría cuántica
PROPIEDADES ONDULATORIAS DE LA MATERIA
PRINCIPIO DE INCERTIDUMBRE
PROPIEDADES ONDULATORIAS DE LA MATERIA
El comportamiento ondulatorio de la materia
FISICA CUANTICA FISICA CUÁNTICA.
TEORÍAS ACERCA DE LA LUZ
FÍSICA CUÁNTICA.
Mecánica cuántica Primeros pasos (radiación e.m.):
Modelo actual y Números Cuánticos
PRINCIPIO DE INCERTIDUMBRE
Teoría y modelos atómicos
Andrés Felipe Duque Bermúdez.  Wilhelm Röntgen (7 de marzo de de febrero de 1923)  Logra la primera radiografía experimentando con un tubo.
Fundamentos de Física Moderna Mecánica Cuántica
G1E06Domingo DOMINGO ALFONSO CORONADO ARRIETA FISICA MODERNA
Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ PEDRO ANDREY CAÑÓN JIMÉNEZ G2E10PEDRO.
Fundamentos de Física Moderna Mecánica Cuántica
Propiedades Ondulatorias de la Materia
Compendio de Experimentos Clásicos de la Física Moderna
Universidad Nacional de Colombia Sede Bogotá
PROPIEDADES ONDULATORIAS DE LA MATERIA
Joan Camilo Poveda Fajardo G1E21Joan Louis Víctor de Broglie ( ) En su tesis doctoral Broglie propuso que se podrían unificar los comportamientos.
COMPENDIO DE EXPERIMENTOS CLÁSICOS DE LA FÍSICA MODERNA ANDRÉS CAMILO VARGAS PÁRAMO G2E34 19 DE JUNIO DE 2015.
Fundamentos de Física Moderna Mecánica Cuántica UN Luis Felipe Cepeda Vargas -G1E05Luis- 15/06/2015.
UNIVERSIDAD NACIONAL DE COLOMBIA Oswaldo Ivan Homez Lopez G1E13Oswaldo
UN Andrés Camilo Vargas Páramo G2E34 19 de junio de 2014
FÍSICA DE SEMICONDUCTORE S PERSONAJES UN Natalia Andrea Rodriguez Delgado -fsc35Natalia- Andrés Rey Caballero -fsc33Andres 2015.
FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES
Ross Alejandra Silva Torres Ingeniería eléctrica física moderna
Andrés Camilo Suárez Leaño 17/06/2015
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna.
FUNDAMENTOS DE FÍSICA MODERNA PROPIEDADES ONDULATORIAS DE LA MATERIA -ONDAS DE MATERIA- UN ESTEBAN GUZMÁN G2E15CARLOS 2015.
UN Sergio Toledo Cortes G2E FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES.
Andrés Felipe Duque Bermúdez. El físico Louis De Broglie postula que la materia posee una doble naturaleza, que se comporta de manera corpuscular y en.
PROPIEDADES DE ONDULATORIAS DE LA MATERIA UNIVERSIDAD NACIONAL DE COLOMBIA FUNDAMENTOS DE FÍSICA MODERNA NICOLÁS GALINDO GUTIÉRREZ CÓDIGO: G1E09NICOLAS.
Nombre: Camilo Andrés Vargas Jiménez -G2E32Camilo-
FÍSICA DE SEMICONDUCTORES PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG
Fundamentos de Física Moderna Mecánica Cuántica
PROPIEDADES ONDULATORIAS DE LA MATERIA Daniel Mateo Aguirre Bermúdez G2E03Daniel 08/06/2015.
Fundamentos de Física Moderna Ondas de Materia
Compendio de Experimentos Clásicos de la Física Moderna Jonathan Alexis Saldarriaga Conde -G1E25Jhonatan- 09/06/2015.
UN JUAN F. QUINTERO DUARTE G2E26
FÍSICA DE SEMICONDUCTORES Mecánica Cuántica
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
COMPENDIO DE EXPERIMENTOS CLÁSICOS DE LA FÍSICA MODERNA ANDRÉS FELIPE ROJAS RAMÍREZ G1E24ANDRES
Física Cuántica Durante el siglo XIX, diversos físicos trataron de comprender el comportamiento de los átomos y moléculas a partir de las leyes físicas.
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
Compendio de Experimentos Clásicos de la Física Moderna
FÍSICA CUÁNTICA.
Compendio de Experimentos Clásicos de la Física Moderna
Compendio de Experimentos Clásicos de la Física Moderna
Una nueva descripción del átomo según la Mecánica Ondulatoria
FUNDAMENTOS DE FÍSICA MODERNA – MECÁNICA CUÁNTICA - ANDRÉS FELIPE ROJAS RAMÍREZ G1E24ANDRES
Fundamentos de Física Moderna Mecánica Cuántica UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ PEDRO ANDREY CAÑÓN JIMÉNEZ G2E10PEDRO 14/06/2015.
Física Cuántica.
Modelos atómicos hasta el actual
UN Andres Santiago Espinosa Moreno G2E11Andres.  Postulado de Louis De Debroglie De Broglie sostuvo que el movimiento de una partícula era gobernado.
Dualidad onda-partícula (relación de broglie)
* Series espectrales de emisión del
Tema 2. Física cuántica Resumen.
Resumen. Modelos atómicos Después de los modelos iniciales de Thomson y Rutherford, en los que los electrones podían tener cualquier energía, una serie.
Mecánica Cuántica Universidad Nacional de Colombia sede Bogotá Fundamentos de Física Moderna 2016 Edward López Díaz Código
TEORÍA CUÁNTICA: la solución de Planck, el efecto fotoeléctrico y efecto Compton Xihomara Lizzet Casallas Cruz Grupo 9 N 7 D.I Física III.
El estado cuántico es la descripción del estado físico que en un momento dado tiene un sistema físico en el marco de la mecánica cuántica. Un estado cuántico.
La teoría CUÁNTICA LA HIPÓTESIS DE PLANCK LA TEORÍA CUÁNTICA La teoría cuántica, es una teoría física basada en la utilización del concepto de unidad.
MECANICA CUANTICA Eliana Rincon Torres T4G2N29 Eliana.
PROFESOR JAIME VILLALOBOS VELASCO DEPARTAMENTO DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA KEVIN DANIEL BARAJAS VALEROG2N03.
Mecánica Cuántica Universidad Nacional de Colombia sede Bogotá Fundamentos de Física Moderna 2016 Sergio Alejandro Sánchez Código
María Constanza calderón Sanjuán
Transcripción de la presentación:

UN Nombre: Fabian Andres Robayo Quinbtero Fecha: 14/06/2015 Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA -Ondas de Materia- UN Nombre: Fabian Andres Robayo Quinbtero Fecha: 14/06/2015

PROPIEDADES ONDULATORIAS DE LA MATERIA Postulado de Louis De Debroglie En 1923 De Broglie propuso la llamada hipótesis de De Broglie por la que a cualquier partícula podía asignársele un paquete de ondas materiales o superposición de ondas de frecuencia y longitud de onda asociada con el momento lineal y la energía: Donde son el momento lineal y la energía cinética de la partícula, y son el vector número de onda y la frecuencia angular. Cuando se consideran partículas macroscópicas muy localizadas el paquete de ondas se restringe casi por completo a la región del espacio ocupada por la partícula y, en ese caso, la velocidad de movimiento de la partícula no coincide con la velocidad de fase de la onda sino con la velocidad de grupo del paquete: La fórmula de De Broglie encontró confirmación experimental en 1927 un experimento que probó que la ley de Bragg, inicialmente formulada para rayos X y radiación de alta frecuencia, era también válida para electrones lentos si se usaba como longitud de onda la longitud postulada por De Broglie. Esos hechos llevaron a los físicos a tratar de formular una ecuación de ondas cuántica que en el límite clásico macroscópico se redujera a las ecuaciones de movimiento clásicas o leyes de Newton. Dicha ecuación ondulatoria había sido formulada por Erwin Schrödinger en 1925 y es la celebrada Ecuación de Schrödinger:

Ondas de Materia Para postular esta propiedad de la materia De Broglie se basó en la explicación del efecto fotoeléctrico, que poco antes había dado Albert Einstein sugiriendo la naturaleza cuántica de la luz. Para Einstein, la energía transportada por las ondas luminosas estaba cuantizada, distribuida en pequeños paquetes energía o cuantos de luz, que más tarde serían denominados fotones, y cuya energía dependía de la frecuencia de la luz a través de la relación: , donde v; es la frecuencia de la onda luminosa y h; la constante de Planck. Albert Einstein proponía de esta forma, que en determinados procesos las ondas electromagnéticas que forman la luz se comportan como corpúsculos. De Broglie se preguntó que por qué no podría ser de manera inversa, es decir, que una partícula material (un corpúsculo) pudiese mostrar el mismo comportamiento que una onda. El físico francés relacionó la longitud de onda, λ (lambda) con la cantidad de movimiento de la partícula, mediante la fórmula: Esta hipótesis se confirmó tres años después para los electrones, con la observación de los resultados del experimento de la doble rendija de Young en la difracción de electrones en dos investigaciones independientes

Experimento de Davisson-Germer El experimento de Davisson-Germer demostró la naturaleza ondulatoria de los electrones, confirmando la hipótesis anterior de Broglie. Poner la dualidad onda-partícula sobre una base firme experimental, representó un gran paso adelante en el desarrollo de la mecánica cuántica. La ley de Bragg para la difracción, se había aplicado a la difracción de rayos X, pero esta fué la primera aplicación de ondas a las partículas.

Principio de Incertidumbre de Heisenberg En mecánica cuántica, la relación de indeterminación de Heisenberg o principio de incertidumbre establece la imposibilidad de que determinados pares de magnitudes físicas sean conocidas con precisión arbitraria. Sucintamente, afirma que no se puede determinar, en términos de la física cuántica, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimientos lineales y, por tanto, su masa y velocidad. Este principio fue enunciado por Werner Heisenberg en 1925. El principio de indeterminación no tiene un análogo clásico y define una de las diferencias fundamentales entre física clásica y física cuántica. Desde un punto de vista lógico es una consecuencia de axiomas corrientes de la mecánica cuántica y por tanto estrictamente se deduce de los mismos

Existencia de partículas virtuales Consecuencias del principio de incertdumbre Este principio supone un cambio básico en la naturaleza de la física, ya que se pasa de un conocimiento absolutamente preciso en teoría (aunque no en el conocimiento basado sólo en probabilidades). Aunque debido a la pequeñez de la constante de Planck, en el mundo macroscópico la indeterminación cuántica es casi siempre completamente despreciable, y los resultados de las teorías físicas deterministas, como la teoría de la relatividad de Einstein, siguen teniendo validez en todos casos prácticos de interés. Las partículas, en mecánica cuántica, no siguen trayectorias definidas. No es posible conocer exactamente el valor de todas las magnitudes físicas que describen el estado de movimiento de la partícula en ningún momento, sino sólo una distribución estadística. Por lo tanto no es posible asignar una trayectoria a una partícula. Sí se puede decir que hay una determinada probabilidad de que la partícula se encuentre en una determinada región del espacio en un momento determinado. Comúnmente se considera que el carácter probabilístico de la mecánica cuántica invalida el determinismo científico. Sin embargo, existen varias interpretaciones de la mecánica cuántica y no todas llegan a esta conclusión. Según puntualiza Stephen Hawking, la mecánica cuántica es determinista en sí misma, y es posible que la aparente indeterminación se deba a que realmente no existen posiciones y velocidades de partículas, sino sólo ondas. Los físicos cuánticos intentarían entonces ajustar las ondas a nuestras ideas preconcebidas de posiciones y velocidades. La inadecuación de estos conceptos sería la causa de la aparente impredecibilidad. Otros fenómenos deducibles o conectados con el principio de indeterminación de Heisenberg son: Efecto túnel Energía del punto cero Existencia de partículas virtuales Energía del vacío e inexistencia del vacío absoluto. Radiación de Hawking e inestabilidad de agujeros negros